西格尔零点猜想_我从埃里克·西格尔学到的东西

西格尔零点猜想

I finished reading Eric Siegel’s Predictive Analytics. And I have to say it was an awesome read. How do I define an awesome or great book? A book that changes your attitude permanently. You must not be the same person that you were before you picked up the book. It impacts one or more aspects of your life: personal, financial, social, romantic, family, or professional. Also, I read a book only if I can use what I learn from it. I don’t read it just for the sake of learning something. It needs to be practically usable in one of the areas of my life immediately if a book has to be on my desk. So yes, this book made a big impact not only on my professional understanding of data science but it also helped me uncover my interests. There are two primary things to learn from the book. First one is from the five effects:

我读完了Eric Siegel的Predictive Analytics 。 我不得不说这是一本很棒的书。 我如何定义一本很棒的书? 一本书可以永久改变您的态度。 您一定不能和拾起书之前的那个人一样。 它会影响您生活的一个或多个方面:个人,财务,社交,浪漫,家庭或职业。 另外,只有在我可以使用从书本中学到的知识的情况下,我才会读一本书。 我不只是为了学习一些东西而阅读它。 如果必须在我的书桌上放一本书,它必须立即在我的生活中的一个领域中可用。 因此,是的,这本书不仅对我对数据科学的专业理解产生了重大影响,而且还帮助我发现了自己的兴趣。 从这本书中有两点要学习。 第一个是来自五个效果

  1. The Prediction Effect

    预测效果
  2. The Data Effect

    数据效果
  3. The Induction Effect

    感应效应
  4. The Ensemble Effect

    合奏效果
  5. The Persuasion Effect

    说服力

Without giving away the book’s ideas, Eric has hidden a lot of his experience in predictive analytics into these effects. The prediction effect proves that a lesser accurate prediction is better than a guess in business. The data effect says the data always has a story to tell and there is always something valuable to learn from it. The induction effect proves that it is the art that drives machine learning. The ensemble effect explains how the concept of synergy is useful in prediction. The persuasion effect connects marketing techniques, business-sense, and A/B testing. You might think it is all so simple and you already know it and you might be right unless you have a decade of experience in predictive analytics. And you still can learn something new in the book. Each effect is explained with real-life business cases. The book is filled with practical business results obtained from applying these effects. The most contrasting thing is he was a professor in a university but his writing style is practical, non-academic, and business-results oriented.

埃里克(Eric)在不放弃本书思想的前提下,将他在预测分析中的许多经验隐藏在这些影响中。 预测效果证明,准确度较低的预测比业务中的猜测更好。 数据效应表明数据总是有故事要讲的,总有一些值得学习的东西。 归纳效应证明,这是驱动机器学习的艺术。 合奏效应解释了协同作用的概念如何在预测中有用。 说服效果将营销技术,业务感知和A / B测试联系起来。 您可能会认为它是如此简单,并且您已经知道了,并且可能是对的,除非您在预测分析方面拥有十年的经验。 而且您仍然可以学习这本书中的新内容。 每种效果均通过实际业务案例进行解释。 这本书包含了通过应用这些效果而获得的实际业务成果。 最相反的是他是大学的教授,但是他的写作风格是务实,非学术性和商业成果导向的。

Image for post
From Eric Siegel’s Book
埃里克·西格尔的书

The second thing I learned from the book is the understanding of the subject itself. I have taken several data science courses and written short programs using Pandas, NumPy, and scikit-learn. I have built a few machine learning models and I thought I knew something. I was wrong. This book taught me the usefulness of machine learning in real-life. Writing code to build, test, and evaluate models is not understanding machine learning. This book gives a detailed explanation of what machine learning is. There is an even more detailed explanation of decision trees without a single line of code. That in itself shows the grip of Eric’s understanding of machine learning modeling. Then there is a good amount of coverage of important topics like correlation does not imply causation, how models over-learn, and why training-test data split exists. Of course, all of it with real-life business cases. What looks like business risk, Eric converts it into an opportunity using predictive analytics. There is not a page in the book where he loses the focus from using predictive analytics to solve business problems.

我从这本书中学到的第二件事是对主题本身的理解。 我参加了一些数据科学课程,并使用Pandas,NumPy和scikit-learn编写了简短的程序。 我建立了一些机器学习模型,我以为我知道一些。 我错了。 这本书教会了我机器学习在现实生活中的有用性。 编写代码以构建,测试和评估模型并不能理解机器学习。 本书详细介绍了什么是机器学习。 无需一行代码,就可以更详细地解释决策树。 这本身就表明了Eric对机器学习建模的理解。 然后,对重要主题的讨论很多,例如相关性并不意味着因果关系模型如何过度学习以及为何存在训练测试数据拆分 。 当然,所有这些都与真实的业务案例有关。 看起来像业务风险的Eric使用预测分析将其转换为机会。 书中没有一页他会因为使用预测分析来解决业务问题而失去了重点。

My professional interests have permanently changed after reading the book. Now I am curious and very much interested in learning and finding more about how machine learning uncovers financial frauds, how a machine learning program can be applied to marketing or advertising problem in a business, and how it can be used in law enforcement. All of which I was least interested in doing before reading the book. I skipped some parts of the book but still, it was a mind-bending experience.

读完这本书后,我的专业兴趣永久地改变了。 现在,我对学习和发现更多有关机器学习如何发现财务欺诈,如何将机器学习程序应用于企业中的营销或广告问题以及如何在执法中使用的信息感到非常好奇和非常感兴趣。 在阅读本书之前,我最不感兴趣的是所有这些。 我略过了本书的某些部分,但那仍然是一种令人难以置信的经历。

翻译自: https://towardsdatascience.com/what-i-learned-from-eric-siegel-1399e1e6d944

西格尔零点猜想

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HDFS 技术

HDFS定义 Hadoop Distributed File System,是一个使用 Java 实现的、分布式的、可横向扩展的文件系 统,是 HADOOP 的核心组件 HDFS特点 处理超大文件流式地访问数据运行于廉价的商用机器集群上; HDFS 不适合以下场合:低延迟数据…

深度学习算法和机器学习算法_啊哈! 4种流行的机器学习算法的片刻

深度学习算法和机器学习算法Most people are either in two camps:大多数人都在两个营地中: I don’t understand these machine learning algorithms. 我不了解这些机器学习算法。 I understand how the algorithms work, but not why they work. 我理解的算法是如…

Python第一次周考(0402)

2019独角兽企业重金招聘Python工程师标准>>> 一、单选 1、Python3中下列语句错误的有哪些? A s input() B s raw_input() C print(hello world.) D print(hello world.) 2、下面哪个是 Pycharm 在 Windows 下 默认 用于“批量注释”的快捷键 A Ctrl d…

ASP.NET 页面之间传值的几种方式

对于任何一个初学者来说,页面之间传值可谓是必经之路,却又是他们的难点。其实,对大部分高手来说,未必不是难点。 回想2016年面试的将近300人中,有实习生,有应届毕业生,有1-3年经验的&#xff0c…

Mapreduce原理和YARN

MapReduce定义 MapReduce是一种分布式计算框架,由Google公司2004年首次提出,并贡献给Apache基金会。 MR版本 MapReduce 1.0,Hadoop早期版本(只支持MR模型)MapReduce 2.0,Hadoop 2.X版本(引入了YARN资源调度框架后&a…

数据可视化图表类型_数据可视化中12种最常见的图表类型

数据可视化图表类型In the current era of large amounts of information in the form of numbers available everywhere, it is a difficult task to understand and get insights from these dense piles of data.在当今时代,到处都是数字形式的大量信息&#xff…

MapReduce编程

自定义Mapper类 class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> &#xff5b; … }自定义mapper类都必须实现Mapper类&#xff0c;有4个类型参数&#xff0c;分别是&#xff1a; Object&#xff1a;Input Key Type-------------K1Text: Input…

统计信息在数据库中的作用_统计在行业中的作用

统计信息在数据库中的作用数据科学与机器学习 (DATA SCIENCE AND MACHINE LEARNING) Statistics are everywhere, and most industries rely on statistics and statistical thinking to support their business. The interest to grasp on statistics also required to become…

IOS手机关于音乐自动播放问题的解决办法

2019独角兽企业重金招聘Python工程师标准>>> 评估手机自带浏览器不能识别 aduio标签重的autoplay属性 也不能自动执行play()方法 一个有效的解决方案是在微信jssdk中调用play方法 document.addEventListener("WeixinJSBridgeReady", function () { docum…

开发人员怎么看实施人员

英文原文&#xff1a;What Developers Think Of Operations&#xff0c;翻译&#xff1a;张红月CSDN 在一个公司里面&#xff0c;开发和产品实施对于IS/IT的使用是至关重要的&#xff0c;一个负责产品的研发工作&#xff0c;另外一个负责产品的安装、调试等工作。但是在开发人员…

怎么评价两组数据是否接近_接近组数据(组间)

怎么评价两组数据是否接近接近组数据(组间) (Approaching group data (between-group)) A typical situation regarding solving an experimental question using a data-driven approach involves several groups that differ in (hopefully) one, sometimes more variables.使…

代码审计之DocCms漏洞分析

0x01 前言 DocCms[音译&#xff1a;稻壳Cms] &#xff0c;定位于为企业、站长、开发者、网络公司、VI策划设计公司、SEO推广营销公司、网站初学者等用户 量身打造的一款全新企业建站、内容管理系统&#xff0c;服务于企业品牌信息化建设&#xff0c;也适应用个人、门户网站建设…

翻译(九)——Clustered Indexes: Stairway to SQL Server Indexes Level 3

原文链接&#xff1a;www.sqlservercentral.com/articles/StairwaySeries/72351/ Clustered Indexes: Stairway to SQL Server Indexes Level 3 By David Durant, 2013/01/25 (first published: 2011/06/22) The Series 本文是阶梯系列的一部分&#xff1a;SQL Server索引的阶梯…

power bi 中计算_Power BI中的期间比较

power bi 中计算Just recently, I’ve come across a question on the LinkedIn platform, if it’s possible to create the following visualization in Power BI:就在最近&#xff0c;我是否在LinkedIn平台上遇到了一个问题&#xff0c;是否有可能在Power BI中创建以下可视化…

-Hive-

Hive定义 Hive 是一种数据仓库技术&#xff0c;用于查询和管理存储在分布式环境下的大数据集。构建于Hadoop的HDFS和MapReduce上&#xff0c;用于管理和查询分析结构化/非结构化数据的数据仓库; 使用HQL&#xff08;类SQL语句&#xff09;作为查询接口&#xff1b;使用HDFS作…

CentOS 7 安装 JDK

2019独角兽企业重金招聘Python工程师标准>>> 1、下载oracle jdk 下载地址&#xff1a; http://www.oracle.com/technetwork/java/javase/downloads/index.html 选择同一协议&#xff0c;下载rpm格式版本jdk&#xff0c;或tar.gz格式jdk。 2、卸载本机openjdk 2.1、查…

如何进行数据分析统计_对您不了解的数据集进行统计分析

如何进行数据分析统计Recently, I took the opportunity to work on a competition held by Wells Fargo (Mindsumo). The dataset provided was just a bunch of numbers in various columns with no indication of what the data might be. I always thought that the analys…

020-Spring Boot 监控和度量

一、概述 通过配置使用actuator查看监控和度量信息 二、使用 2.1、建立web项目&#xff0c;增加pom <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency> 启动项目&a…

matplotlib布局_Matplotlib多列,行跨度布局

matplotlib布局For Visualization in Python, Matplotlib library has been the workhorse for quite some time now. It has held its own even after more nimble rivals with easier code interface and capabilities like seaborn, plotly, bokeh etc. have arrived on the…

Hadoop生态系统

大数据架构-Lambda Lambda架构由Storm的作者Nathan Marz提出。旨在设计出一个能满足实时大数据系统关键特性的架构&#xff0c;具有高容错、低延时和可扩展等特性。Lambda架构整合离线计算和实时计算&#xff0c;融合不可变性&#xff08;Immutability&#xff09;&#xff0c…