数据可视化图表类型_数据可视化中12种最常见的图表类型

数据可视化图表类型

In the current era of large amounts of information in the form of numbers available everywhere, it is a difficult task to understand and get insights from these dense piles of data.

在当今时代,到处都是数字形式的大量信息,要理解并从这些密集数据堆中获得洞察力是一项艰巨的任务。

Data visualisation is the way which helps us in understanding what data tells us. It is more meaningful and appropriate when we use suitable charts to visualise data and get insights from it.

数据可视化是帮助我们了解数据告诉我们的方式。 当我们使用合适的图表来可视化数据并从中获得洞察力时,这将更有意义且更合适。

In this article, we will go through the common chart types and get to know about their applications scenarios. So by this, we can use appropriate chart types that will be helpful in getting characteristics of the data. To get an introduction about data visualisation in detail you can refer to the article- What and Why of Data Visualisation?

在本文中,我们将介绍常见的图表类型,并了解它们的应用场景。 因此,通过这种方式,我们可以使用适当的图表类型,这将有助于获取数据的特征。 要获得有关数据可视化的详细介绍,您可以参考文章- 什么和为什么进行数据可视化?

Now, let us see the different chart types one by one.

现在,让我们一一查看不同的图表类型。

1.折线图 (1. Line Chart)

Line chart or graph is used to illustrate trends in data over a time span or continuous time interval. The line chart tends to reflect different things as they change over time by connecting different plotted points.

折线图或曲线图用于说明一段时间或连续时间间隔内数据的趋势。 折线图往往会通过连接不同的绘制点来反映随着时间变化的不同事物。

Multiple trends can also be displayed by plotting lines of different colours. It is advisable not to exceed 5 lines on the same graph for the clarity.

通过绘制不同颜色的线也可以显示多个趋势。 为了清楚起见,建议不要在同一图形上超过5条线。

For e.g. the scenarios where we can use the line chart are monthly rainfall, annual sales of a company, month over month trends of stock prices, portal users, etc.

例如,我们可以使用折线图的场景是每月降雨量,公司的年销售额,股票价格逐月趋势,门户网站用户等。

Image for post
Line Chart
折线图

2.柱形图 (2. Column Chart)

Column charts are the most basic charts which use columns to show the numerical values between categories. A column chart includes data labels along the horizontal axis with metrics or values along the vertical axis. It takes advantage of the height of the column to tell the difference in the values and the human eye is quite sensitive to the difference in heights.

柱形图是最基本的图表,它们使用柱形显示类别之间的数值。 柱形图包括沿水平轴的数据标签,以及沿垂直轴的度量或值。 它利用列的高度来区分值的差异,而人眼对高度的差异非常敏感。

Column charts can also be used for the comparison between different types of categories. Clustered and Stacked column charts can be used for it.

柱形图也可用于不同类型类别之间的比较。 可以使用群集和堆积柱形图。

Some of the scenarios where column charts can be used are — sales by different region, product category, comparison of classified data.

可以使用柱形图的一些方案是-按不同区域的销售额,产品类别,分类数据的比较。

Image for post
Column Chart
柱形图

3.条形图 (3. Bar Chart)

Bar charts are similar in use as column charts only the positions of its two axes are changes. Bar charts are generally used when there are a relatively large number of categories or they can be useful while displaying negative values.

条形图的用法与柱形图相似,只是条形图的两个轴的位置发生了变化。 条形图通常在类别相对较多时使用,或者在显示负值时很有用。

Bar charts can also be stacked or clustered while comparing different types of categories. The scenarios where bar charts are used are the same as column charts.

比较不同类型的类别时,也可以堆叠或群集条形图。 使用条形图的情况与柱形图相同。

Image for post
Bar Chart
条形图

4.饼图 (4. Pie Chart)

Pie charts are used to represent the proportions of different classifications in various fields. They are very useful in knowing how much portion of something is of a whole. But we should limit the numbers of classifications as the number of slices increases the chart become unhandy and we are not able to recognise the proportion of each slice as size distinction is not obvious.

饼图用于表示各个领域中不同类别的比例。 它们对于了解某物有多少是整体非常有用。 但是,随着切片数量的增加,我们应该限制分类的数量,图表变得不便,并且由于大小差异不明显,我们无法识别每个切片的比例。

There is a multi-layer pie chart also, which shows the proportion of different categorical data and also reflects the hierarchical relationships through it.

还有一个多层饼图,它显示了不同类别数据的比例,并通过它反映了层次关系。

The scenarios in which pie charts can be used are such as the comparison between population segments, budget allocations, the male-female ratio, online traffic sources, etc.

可以使用饼图的场景包括人口细分之间的比较,预算分配,男女比例,在线流量来源等。

Image for post
Pie Chart
饼形图

5.面积图 (5. Area Chart)

Area chart represents the change in data(quantities) over time same as of the line chart. It is formed on the basis of the line chart in which the are between the trend-line and axis is filled with colour. As filling with colours better highlights the trend information.

面积图表示与折线图相同的数据(量)随时间的变化。 它是根据折线图形成的,在折线图中,趋势线和轴之间的颜色填充有颜色。 随着颜色的填充更好地突出了趋势信息。

The fill should be somewhat transparent or different so that the user can easily observe the overlapping relationship between different trends. Area charts can be used to depict time-series relationship, part-to-whole analysis, a simple comparison between the trend of each category, etc.

填充应该是透明的或不同的,以便用户可以轻松观察不同趋势之间的重叠关系。 面积图可用于描述时间序列关系,零件到整体分析,每个类别的趋势之间的简单比较等。

Image for post
Area Chart
面积图

6.散点图 (6. Scatter Chart)

Scatter plot is used to identify two relationships between two measures(quantities). In this, the two variables are plotted in the form of points on the points on the rectangular coordinate system. The relationship we identify between two variables is a correlation.

散点图用于识别两个度量(数量)之间的两个关系。 在此,两个变量以点的形式绘制在直角坐标系上的点上。 我们确定的两个变量之间的关系是相关性。

Scatter plot is used mainly to identify how well we can infer the vertical values from the horizontal axis values. For scatter plot we need a lot of data otherwise we can’t assure that the identified relationship is obvious or not.

散点图主要用于识别从水平轴值推断垂直值的能力。 对于散点图,我们需要大量数据,否则我们无法确保所识别的关系是显而易见的。

Image for post
Scatter Chart
散点图

7.气泡图 (7. Bubble Chart)

A bubble chart is the variant of the scatter plot. It is a multivariate chart that displays three-dimensional data. In the bubble chart, the x & y-axes are used to express two dimensions or measures and the size of the bubble determines the third value. The bubbles can be classified into different categories by using different colours.

气泡图是散点图的变体。 它是显示三维数据的多元图表。 在气泡图中,x和y轴用于表示两个维度或度量,气泡的大小决定了第三个值。 可以使用不同的颜色将气泡分为不同的类别。

Bubble charts are mainly used to compare and show the correlations between classified circles using positions and proportions.

气泡图主要用于比较和显示使用位置和比例分类的圆之间的相关性。

Image for post
Bubble Chart
气泡图

8.量规表 (8. Gauge Chart)

Gauge Chart is used to display the progressive values. The scale represents a metric, in which the pointer angle represents the value of a dimension represented by the pointer.

仪表图用于显示渐进值。 标度表示度量,其中指针角度表示由指针表示的尺寸的值。

The gauge can be in the form of a ring, half ring or a tube bar, indicating the progress. The scenarios where gauge can be used are for comparison between intervals, achieved value versus targeted value.

量规可以是环,半环或管棒的形式,以指示进度。 可以使用量规的场景用于时间间隔,实现值与目标值之间的比较。

Image for post
Gauge Chart
量规图

9. TreeMap (9. TreeMap)

A TreeMap is used to represent the hierarchical structure of the data in a space-efficient way. The visualisation is created using the method of nested rectangles and displaying the quantities via area for each category. We can drill down within a treemap to an unlimited number of levels.

TreeMap用于以节省空间的方式表示数据的层次结构。 可视化是使用嵌套矩形的方法创建的,并通过面积显示每个类别的数量。 我们可以在树状图中向下钻取到无限数量的级别。

TreeMaps can be used when data needs to be studied with respect to two metric values, having a large amount of hierarchical data, to get a high-level view of similarities and differences within one category or between multiple categories.

当需要针对具有大量分层数据的两个度量值来研究数据时,可以使用TreeMaps来获得一个类别内或多个类别之间的相似点和不同点的高级视图。

Image for post
TreeMap
树状图

10.漏斗图 (10. Funnel Chart)

A funnel chart is a type of area chart which helps in visualising the progressive reduction of data from one phase to another amounting 100 per cent in total. The size of the area is determined by the series of value as a percentage of the total of all values.

漏斗图是一种面积图,有助于直观显示数据从一个阶段到另一个阶段的逐步减少,总计总计100%。 区域的大小由一系列值(占所有值的总和)确定。

Funnel charts are suitable for comparing rankings. They can be used in visualising the sales conversion data, in analyzing data and managing order and sales cycles, evaluation of a particular process, and in standard value comparison.

漏斗图适用于比较排名。 它们可用于可视化销售转换数据,分析数据以及管理订单和销售周期,评估特定流程以及进行标准值比较。

Image for post
Funnel Chart
漏斗图

11.瀑布图 (11. Waterfall Chart)

A waterfall chart is a modified type of column chart. A waterfall chart helps in understanding the cumulative effect on the initial value which is increased or decreased by a series of intermediate values leading to s final value.

瀑布图是柱形图的一种修改类型。 瀑布图有助于理解对初始值的累积影响,该初始值通过一系列导致最终值的中间值增加或减少。

In the waterfall chart, the first column usually represents the initial value to total value, the last column represents the total value and the intermediate columns appear to float, and represent the negative or positive changes from one period of time to another.

在瀑布图中,第一列通常代表初始值到总值,最后一列代表总值,中间列似乎是浮动的,代表从一个时间段到另一个时间段的负或正变化。

Waterfall charts are most widely used in the Finance sector to show net value transition, profit variation from the start of a year till the end, and it is also effective to use when to display gradual changes in the value measures over a period of time.

瀑布图是金融领域中使用最广泛的图表,用于显示净值转换,从年初到年底的利润变化,并且在显示一段时间内价值度量的逐渐变化时也很有效。

Image for post
Waterfall Chart
瀑布图

12.地图 (12. Map Chart)

Map Charts are the visualisation which helps us to position our data in the geographical context to get the intuition about the regional distribution on the different levels such as world, countries, states, etc. We can show data on maps in different ways such as point map, flow map and heat map.

地图图是一种可视化视图,可帮助我们在地理环境中定位数据,以直观了解世界,国家,州等不同层次上的区域分布。我们可以以不同方式(例如点)在地图上显示数据图,流图和热图。

1. Point Map

1.点地图

A Point map uses the method of plotting points on a geographical layer or map. The distribution in the form of points makes it easy to grasp the overall distribution of data. We can also use bubbles instead of points which have different colours and sizes based on values and categories.

点地图使用在地理图层或地图上绘制点的方法。 点形式的分布可以轻松掌握数据的整体分布。 我们还可以使用气泡代替根据值和类别具有不同颜色和大小的点。

Image for post
Point Map
点地图

2. Flow Map

2.流程图

A Flow map allows the interaction between the outflow and inflow area. It is usually represented by the line connecting the geometric centres of the location. The direction of the line specifies the direction of flow. The width or colour of the line indicates the flow value. Flow Maps can be used to display the imports, exports, geographic migrations etc.

流图允许流出和流入区域之间的相互作用。 它通常由连接位置的几何中心的线表示。 线的方向指定流动的方向。 线条的宽度或颜色表示流量值。 流图可用于显示导入,导出,地理迁移等。

Image for post
Flow Map
流图

3. Heat Map

3.热图

A Heat Map uses the colour gradients range from light to dark based on the different values which are completely in the specified region. Heat Map can be used in specifying the temperature distribution, population density, etc.

热图根据完全在指定区域中的不同值使用从浅到深的颜色渐变范围。 热图可用于指定温度分布,人口密度等。

Image for post
Heat Map
热图

Conclusion

结论

All of the above 12 charts are the most frequently used charts in data visualisation. You can create these visualisations on various tools like Power BI, Tableau, Microsoft Excel, etc. These are the basic charts but most of the complex charts are derived from these charts. However, as simple the chart is, the easy it is to understand and get the right insight from data. So, keep this in mind, and try to get a grip over these common charts.

以上所有12个图表都是数据可视化中最常用的图表。 您可以在各种工具(例如Power BI,Tableau,Microsoft Excel等)上创建这些可视化效果。这些是基本图表,但是大多数复杂图表均来自这些图表。 但是,图表非常简单,很容易理解并从数据中获得正确的见解。 因此,请记住这一点,并尝试掌握这些常见图表。

翻译自: https://medium.com/vlearn-together/12-most-common-types-of-charts-in-data-visualisation-36021bd2fef5

数据可视化图表类型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390769.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MapReduce编程

自定义Mapper类 class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> &#xff5b; … }自定义mapper类都必须实现Mapper类&#xff0c;有4个类型参数&#xff0c;分别是&#xff1a; Object&#xff1a;Input Key Type-------------K1Text: Input…

统计信息在数据库中的作用_统计在行业中的作用

统计信息在数据库中的作用数据科学与机器学习 (DATA SCIENCE AND MACHINE LEARNING) Statistics are everywhere, and most industries rely on statistics and statistical thinking to support their business. The interest to grasp on statistics also required to become…

IOS手机关于音乐自动播放问题的解决办法

2019独角兽企业重金招聘Python工程师标准>>> 评估手机自带浏览器不能识别 aduio标签重的autoplay属性 也不能自动执行play()方法 一个有效的解决方案是在微信jssdk中调用play方法 document.addEventListener("WeixinJSBridgeReady", function () { docum…

开发人员怎么看实施人员

英文原文&#xff1a;What Developers Think Of Operations&#xff0c;翻译&#xff1a;张红月CSDN 在一个公司里面&#xff0c;开发和产品实施对于IS/IT的使用是至关重要的&#xff0c;一个负责产品的研发工作&#xff0c;另外一个负责产品的安装、调试等工作。但是在开发人员…

怎么评价两组数据是否接近_接近组数据(组间)

怎么评价两组数据是否接近接近组数据(组间) (Approaching group data (between-group)) A typical situation regarding solving an experimental question using a data-driven approach involves several groups that differ in (hopefully) one, sometimes more variables.使…

代码审计之DocCms漏洞分析

0x01 前言 DocCms[音译&#xff1a;稻壳Cms] &#xff0c;定位于为企业、站长、开发者、网络公司、VI策划设计公司、SEO推广营销公司、网站初学者等用户 量身打造的一款全新企业建站、内容管理系统&#xff0c;服务于企业品牌信息化建设&#xff0c;也适应用个人、门户网站建设…

翻译(九)——Clustered Indexes: Stairway to SQL Server Indexes Level 3

原文链接&#xff1a;www.sqlservercentral.com/articles/StairwaySeries/72351/ Clustered Indexes: Stairway to SQL Server Indexes Level 3 By David Durant, 2013/01/25 (first published: 2011/06/22) The Series 本文是阶梯系列的一部分&#xff1a;SQL Server索引的阶梯…

power bi 中计算_Power BI中的期间比较

power bi 中计算Just recently, I’ve come across a question on the LinkedIn platform, if it’s possible to create the following visualization in Power BI:就在最近&#xff0c;我是否在LinkedIn平台上遇到了一个问题&#xff0c;是否有可能在Power BI中创建以下可视化…

-Hive-

Hive定义 Hive 是一种数据仓库技术&#xff0c;用于查询和管理存储在分布式环境下的大数据集。构建于Hadoop的HDFS和MapReduce上&#xff0c;用于管理和查询分析结构化/非结构化数据的数据仓库; 使用HQL&#xff08;类SQL语句&#xff09;作为查询接口&#xff1b;使用HDFS作…

CentOS 7 安装 JDK

2019独角兽企业重金招聘Python工程师标准>>> 1、下载oracle jdk 下载地址&#xff1a; http://www.oracle.com/technetwork/java/javase/downloads/index.html 选择同一协议&#xff0c;下载rpm格式版本jdk&#xff0c;或tar.gz格式jdk。 2、卸载本机openjdk 2.1、查…

如何进行数据分析统计_对您不了解的数据集进行统计分析

如何进行数据分析统计Recently, I took the opportunity to work on a competition held by Wells Fargo (Mindsumo). The dataset provided was just a bunch of numbers in various columns with no indication of what the data might be. I always thought that the analys…

020-Spring Boot 监控和度量

一、概述 通过配置使用actuator查看监控和度量信息 二、使用 2.1、建立web项目&#xff0c;增加pom <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency> 启动项目&a…

matplotlib布局_Matplotlib多列,行跨度布局

matplotlib布局For Visualization in Python, Matplotlib library has been the workhorse for quite some time now. It has held its own even after more nimble rivals with easier code interface and capabilities like seaborn, plotly, bokeh etc. have arrived on the…

Hadoop生态系统

大数据架构-Lambda Lambda架构由Storm的作者Nathan Marz提出。旨在设计出一个能满足实时大数据系统关键特性的架构&#xff0c;具有高容错、低延时和可扩展等特性。Lambda架构整合离线计算和实时计算&#xff0c;融合不可变性&#xff08;Immutability&#xff09;&#xff0c…

使用Hadoop所需要的一些Linux基础

Linux 概念 Linux 是一个类Unix操作系统&#xff0c;是 Unix 的一种&#xff0c;它 控制整个系统基本服务的核心程序 (kernel) 是由 Linus 带头开发出来的&#xff0c;「Linux」这个名称便是以 「Linus’s unix」来命名的。 Linux泛指一类操作系统&#xff0c;具体的版本有&a…

python多项式回归_Python从头开始的多项式回归

python多项式回归Polynomial regression in an improved version of linear regression. If you know linear regression, it will be simple for you. If not, I will explain the formulas here in this article. There are other advanced and more efficient machine learn…

回归分析_回归

回归分析Machine learning algorithms are not your regular algorithms that we may be used to because they are often described by a combination of some complex statistics and mathematics. Since it is very important to understand the background of any algorith…

数据科学还是计算机科学_何时不使用数据科学

数据科学还是计算机科学意见 (Opinion) 目录 (Table of Contents) Introduction 介绍 Examples 例子 When You Should Use Data Science 什么时候应该使用数据科学 Summary 摘要 介绍 (Introduction) Both Data Science and Machine Learning are useful fields that apply sev…

leetcode 523. 连续的子数组和

给你一个整数数组 nums 和一个整数 k &#xff0c;编写一个函数来判断该数组是否含有同时满足下述条件的连续子数组&#xff1a; 子数组大小 至少为 2 &#xff0c;且 子数组元素总和为 k 的倍数。 如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 …

Docker学习笔记 - Docker Compose

一、概念 Docker Compose 用于定义运行使用多个容器的应用&#xff0c;可以一条命令启动应用&#xff08;多个容器&#xff09;。 使用Docker Compose 的步骤&#xff1a; 定义容器 Dockerfile定义应用的各个服务 docker-compose.yml启动应用 docker-compose up二、安装 Note t…