如何使用Picterra的地理空间平台分析卫星图像

From April-May 2020, Sentinel-Hub had organized the third edition of their custom script competition. The competition was organized in collaboration with the Copernicus EU Earth Observation programme, the European Space Agency and AI4EO consortium.

从2020年4月至5月,Sentinel-Hub组织了第三次自定义脚本竞赛 。 该竞赛是与哥白尼欧盟地球观测计划 , 欧洲航天局和AI4EO财团合作组织的 。

Motive of the competition:

比赛动机:

To look for new, innovative scripts, which enable users to make sense of Earth Observation data. It was designed to find solutions to the huge challenges in the new ‘normal

寻找新的,创新的脚本,使用户能够理解地球观测数据。 它旨在为新的“ 正常 ”情况下的巨大挑战找到解决方案

What was the objective of our submission:

我们提交的目标是什么

Covid-19 has led to many world governments enforcing emergency quarantine measures. What is the impact of such policies on the environment? Can we measure the change in pollution levels? Is there a co-relation to economic activity? And can we build leading indicators which enable us to measure economic activity at a global scale. Through our project, we tried to analyze satellite imagery to identify the answers.

Covid-19导致许多世界政府强制执行紧急隔离措施。 此类政策对环境有何影响? 我们可以衡量污染水平的变化吗? 与经济活动是否有关联? 我们是否可以建立领先的指标,使我们能够在全球范围内衡量经济活动。 通过我们的项目,我们尝试分析卫星图像以找出答案。

Tools used:

使用的工具:

The tools make the man, or so they say!

这些工具造就了男人,或者他们说!

I always tell my team to first start, by researching the available tools. Because the right tools can make or break a project!

我总是告诉我的团队首先研究可用的工具。 因为正确的工具可以建立或破坏项目!

The tools that were available for this project were:

该项目可用的工具有:

  1. Sentinel-Hub EO Browser

    Sentinel-Hub EO浏览器

  2. Sentinel-Hub API access

    Sentinel-Hub API访问

  3. Picterra’s AI platform

    Picterra的AI平台

  4. euroData Cube

    euroData多维数据集

We first used Sentinel-5P data to plot NO2 levels. This was done to identify any anomalies (sudden changes) in the data. This was then collaborated with VHR imagery (Very high resolution imagery)

我们首先使用Sentinel-5P数据绘制NO2水平。 这样做是为了识别数据中的任何异常(突然变化)。 然后与VHR影像(非常高分辨率的影像)合作

Statistical analysis of this data was used to show a significant difference in countries like Germany (where the lockdown was strictly implemented) vs countries like Italy.

通过对该数据进行统计分析,可以发现德国(严格执行锁定)等国家与意大利等国家之间存在显着差异。

The plot of NO2 levels for Germany and Italy. Post the lock-down, pollution levels in Germany drop significantly.
Plot of NO2 levels for Germany & Italy (note the presence of missing values) Source: Sentinel-5P processed data
德国和意大利的NO2水平图(注意存在遗漏值)来源:Sentinel-5P处理的数据

I have uploaded the notebook used for plotting the above plot on euroData Cube’s Contribution page. you can check it via the link given below:

我已经将用于绘制上述图表的笔记本上载到euroData Cube的“贡献”页面。 您可以通过以下链接进行检查:

https://eurodatacube.com/marketplace/notebooks/contributions/NO2_Analysis_Covid19_Lockdowns.ipynb

https://eurodatacube.com/marketplace/notebooks/contributions/NO2_Analysis_Covid19_Lockdowns.ipynb

Image for post

NO2 is produced by vehicular traffic and as un-burnt residue from chemical processes. This can be collaborated by counting cars from high resolution satellite imagery.

机动车交通产生的二氧化氮是化学过程中未燃烧的残留物。 可以通过计算高分辨率卫星图像中的汽车来进行协作。

We will now use Picterra’s machine learning platform to identify vehicles in VHR imagery.

现在,我们将使用Picterra的机器学习平台来识别VHR图像中的车辆。

We need to first login to Picterra’s geo-spatial imagery platform. They have a free trial version, which you can use (without providing any credit cards!)

我们需要先登录Picterra的地理空间图像平台。 他们有一个免费的试用版,您可以使用它( 无需提供任何信用卡! )

Once on the home page, you can Create a new project

进入主页后,您可以创建一个新项目

Image for post

Now you can upload images from your local drive (other options are Online map imagery OR the option to Buy satellite images). Once uploaded, you can then use it to train a detector.

现在,您可以从本地驱动器上载图像 (其他选项是“ 在线地图图像”或“ 购买卫星图像 ”选项)。 上传后,您可以使用它来训练探测器。

Image for post

Once the images are uploaded, we then go to the training section. Here we can use the platform to train a detector. However there are pre-built detectors which you can use. But for this demo, we will train a new one

图片上传后,我们将转到培训部分。 在这里,我们可以使用平台训练探测器。 但是,您可以使用预制的探测器。 但是对于这个演示,我们将训练一个新的

Image for post
Training mode!
训练模式!
Image for post
Available pre-trained models
可用的预训练模型

Click on the Train a new detector

单击训练新的检测器

There are some custom base models. We chose the Vehicles option

有一些自定义基本模型。 我们选择了车辆选项

Image for post

We want to detect cars

我们要检测汽车

There are two available detection type: i) Count and ii) Segmentation

有两种可用的检测类型:i)计数和ii)分段

We select the default Count option. and then press the Create button

我们选择默认的“ 计数”选项。 然后按创建按钮

Image for post

Then add the images that you had added to the project. and press the Start Training button

然后添加您已添加到项目中的图像。 然后按开始训练按钮

Image for post

When you do it for the first time, Picterra gives you a nice video tutorial that walks you through the training process.

第一次进行此操作时,Picterra会为您提供一个不错的视频教程,引导您完成培训过程。

The interface is very intuitive, and once you understand the controls, it becomes easy to navigate.

界面非常直观,一旦您了解了控件,就可以轻松浏览。

First select the Training button to the left. After that you can select the area of interest, as marked by the yellow square. Clicking on the selected AOI, will zoom into the image

首先选择左侧的训练按钮。 之后,您可以选择感兴趣的区域,以黄色正方形标记。 单击所选的AOI,将放大图像

Image for post

Now click on the Polygon button and select the Circle option

现在单击“ 多边形”按钮,然后选择“ 圆”选项

Image for post

You can now click on each of the parked cars within the area of interest and draw a circle on top. This is now your annotated train dataset. You could have selected the polygon option and drawn a box across the car outline, but I am too lazy for that!

现在,您可以单击感兴趣区域内的每个停放的汽车,并在顶部绘制一个圆圈。 现在这是您带注释的火车数据集。 您可以选择“多边形”选项,并在汽车轮廓上绘制一个框,但是我实在太懒了!

Image for post

Now select the Testing button on the left menu and click and mark the testing area on the image. You can annotate the testing dataset. But here I will skip that step — Just to check what happens!

现在,选择左侧菜单上的“ 测试”按钮,然后单击并在图像上标记测试区域。 您可以注释测试数据集。 但是在这里,我将跳过该步骤- 仅检查发生了什么!

Now click on the Train Detector button at the top of the dashboard.

现在,单击仪表板顶部的“ 火车检测器”按钮。

Image for post

Now you can go and have a coffee ( I prefer my masala chai!)

现在您可以去喝咖啡了( 我更喜欢我的咖喱柴! )

Image for post
https://en.wikipedia.org/wiki/Masala_chai#/media/File:Masala_Chai.JPGhttps://en.wikipedia.org/wiki/Masala_chai#/media/File:Masala_Chai.JPG

OR/AND

或/与

can check the educational resources provided. Do check the Picterra University. It has some good resources on end-to-end machine learning for geo-spatial images.

可以查看提供的教育资源。 请检查Picterra大学。 它在地理空间图像的端到端机器学习方面有一些不错的资源。

Since the training is now finished, let's go and check the performance of the detector.

由于培训现已结束,因此我们开始检查检测器的性能。

Image for post
Testing output
测试输出

The performance is good…but not great! At the bottom right, it has mis-identified the roof of the warehouse as a car.

表现不错…但不是很好! 在右下角,它错误地将仓库的屋顶标识为汽车。

For a detector its important to know what it should not consider as an object. In machine learning terms - false positives should be low.

对于检测器来说,重要的是要知道它不应该考虑什么。 用机器学习的术语来说,误报率应该很低。

So we will annotate some more vehicles for our training set. We select a larger area near our previous training set.

因此,我们将为训练集注释更多的车辆。 我们在之前的训练集附近选择了一个较大的区域。

Image for post

Post training, I get a warning: it seems I have some overlapping annotations in the training set. which is true. This can cause mergers while running the inference jobs and give an incorrect count.

训练后,我得到一个警告:看来我在训练集中有一些重叠的注释。 没错 这可能会在运行推理作业时导致合并,并且计数不正确。

So let’s correct that -

所以让我们更正-

Use the Select button on the left to select any of the annotations & modify the marker (green circle).

使用左侧的“选择”按钮选择任何注释并修改标记( 绿色圆圈 )。

Image for post
Modifying the training data to avoid merged annotations
修改训练数据以避免合并注释

Retraining the detector, we get the following output.

重新训练检测器,我们得到以下输出。

Image for post
Testing area after re-training
重新训练后的测试区域

Seems good. We have missed one large white vehicle at the left, but now the misclassification from the roof is missing. And it has got the car to the extreme left corner.

看起来不错。 我们错过了左侧的一辆大型白色车辆,但是现在缺少了从车顶分类错误的信息。 它已将汽车推到了最左端。

The detector can be trained with more data. Let’s now run the detector on the entire image to see the evaluation performance. We will also evaluate it on a new image.

可以用更多数据训练检测器。 现在让我们在整个图像上运行检测器以查看评估性能。 我们还将在新图像上对其进行评估。

Image for post
Added new un-seen images & the trained detector
添加了新的看不见的图像和训练有素的探测器

Press the Run Detector button in front of the image. A prompt informs you about the number of processing quota required for running the data. Since we are running on a free-quota, we press Start Detection.

按下图像前面的“运行检测器”按钮。 提示会通知您有关运行数据所需的处理配额数量。 由于我们使用的是免费配额,因此请按开始检测。

Image for post
Prompt for the Processing quota for the detector
提示检测器的处理配额
Image for post

Viewing the results shows us the output of the detector

查看结果可向我们显示检测器的输出

Image for post
Detector output from unseen images
来自看不见图像的检测器输出

We can also use this powerful platform, for other object detection activities, like solar-arrays, ships, trash, military vehicles etc.!

我们还可以使用这个功能强大的平台进行其他物体检测活动,例如太阳能电池板,轮船,垃圾箱,军用车辆等!

Please check Picterra’s blog for their recent success stories:

请查看Picterra的博客,了解他们最近的成功案例:

  • Object detection stories

    物体检测故事

  • Bring AI-powered object detection to ArcGIS

    将AI驱动的对象检测带到ArcGIS

Note on image licensees:

关于图片被许可人的注意事项:

Unless mentioned otherwise, the author owns the licenses to the images.

除非另有说明,否则作者拥有这些图像的许可证。

Indian mosiac (NO2 levels) was created by the author using Sentinel-Hub Platform

作者使用Sentinel-Hub平台创建了印度洋霜(NO2含量)

Time series plots for No2 levels in Germany & Italy were created by the author using code specified above

作者使用上面指定的代码创建了德国和意大利2级水平的时间序列图

Screenshots are from Picterra’s geo-spatial platform

屏幕截图来自Picterra的地理空间平台

翻译自: https://towardsdatascience.com/how-i-won-sentinel-hub-covid-19-custom-script-hackathon-be882ed05186

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390644.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Packet Tracer中路由器静态路由配置

实验目标&#xff1a;<1>掌握静态路由的配置方法和技巧<2>掌握通过静态路由方式实现网络的连通性<3>熟悉广域网线缆的链接方式技术原理&#xff1a;<1>路由器属于网络层设备&#xff0c;能够根据IP包头的信息&#xff0c;选择一条最佳路径&#xff0c;…

leetcode 852. 山脉数组的峰顶索引(二分查找)

题目 符合下列属性的数组 arr 称为 山脉数组 &#xff1a; arr.length > 3 存在 i&#xff08;0 < i < arr.length - 1&#xff09;使得&#xff1a; arr[0] < arr[1] < … arr[i-1] < arr[i] arr[i] > arr[i1] > … > arr[arr.length - 1] 给你由…

hopper_如何利用卫星收集的遥感数据轻松对蚱hopper中的站点进行建模

hopper建筑学与数据科学 (Architectonics and Data Science) Understanding the site and topography are crucial first step of any architectural project. Site modelling can become very daunting, expensive, or just cumbersome, often having to use various software…

mac里打开隐藏的 library文件夹

打开Finder&#xff0c;单击【前往】&#xff0c;此时只有按住【option】键&#xff0c;就能出现“资源库”的选项。 或者键入 ~/Library 进入 转载于:https://www.cnblogs.com/laolinghunWbfullstack/p/8888124.html

leetcode 65. 有效数字(正则表达式)

题目 有效数字&#xff08;按顺序&#xff09;可以分成以下几个部分&#xff1a; 一个 小数 或者 整数 &#xff08;可选&#xff09;一个 ‘e’ 或 ‘E’ &#xff0c;后面跟着一个 整数 小数&#xff08;按顺序&#xff09;可以分成以下几个部分&#xff1a; &#xff08;…

数据科学项目_完整的数据科学组合项目

数据科学项目In this article, I would like to showcase what might be my simplest data science project ever.在本文中&#xff0c;我想展示一下有史以来最简单的数据科学项目 。 I have spent hours training a much more complex models in the past, and struggled to …

alpha冲刺day8

项目进展 李明皇 昨天进展 编写完个人中心页面今天安排 编写首页逻辑层问题困难 开始编写数据传递逻辑&#xff0c;要用到列表渲染和条件渲染心得体会 小程序框架设计的内容有点忘了&#xff0c;而且比较抽象&#xff0c;需要理解文档举例和具体案例林翔 昨天进展 黑名单用户的…

uni-app清理缓存数据_数据清理-从哪里开始?

uni-app清理缓存数据It turns out that Data Scientists and Data Analysts will spend most of their time on data preprocessing and EDA rather than training a machine learning model. As one of the most important job, Data Cleansing is very important indeed.事实…

高级人工智能之群体智能:蚁群算法

群体智能 鸟群&#xff1a; 鱼群&#xff1a; 1.基本介绍 蚁群算法&#xff08;Ant Colony Optimization, ACO&#xff09;是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题&#xff0c;如旅行商问题&#xff08;TSP&#xff09;。 蚁群算法的基本步骤…

leetcode 483. 最小好进制

题目 对于给定的整数 n, 如果n的k&#xff08;k>2&#xff09;进制数的所有数位全为1&#xff0c;则称 k&#xff08;k>2&#xff09;是 n 的一个好进制。 以字符串的形式给出 n, 以字符串的形式返回 n 的最小好进制。 示例 1&#xff1a; 输入&#xff1a;“13” 输…

图像灰度变换及图像数组操作

Python图像灰度变换及图像数组操作 作者&#xff1a;MingChaoSun 字体&#xff1a;[增加 减小] 类型&#xff1a;转载 时间&#xff1a;2016-01-27 我要评论 这篇文章主要介绍了Python图像灰度变换及图像数组操作的相关资料,需要的朋友可以参考下使用python以及numpy通过直接操…

bigquery_如何在BigQuery中进行文本相似性搜索和文档聚类

bigqueryBigQuery offers the ability to load a TensorFlow SavedModel and carry out predictions. This capability is a great way to add text-based similarity and clustering on top of your data warehouse.BigQuery可以加载TensorFlow SavedModel并执行预测。 此功能…

leetcode 1600. 皇位继承顺序(dfs)

题目 一个王国里住着国王、他的孩子们、他的孙子们等等。每一个时间点&#xff0c;这个家庭里有人出生也有人死亡。 这个王国有一个明确规定的皇位继承顺序&#xff0c;第一继承人总是国王自己。我们定义递归函数 Successor(x, curOrder) &#xff0c;给定一个人 x 和当前的继…

vlookup match_INDEX-MATCH — VLOOKUP功能的升级

vlookup match电子表格/索引匹配 (SPREADSHEETS / INDEX-MATCH) In a previous article, we discussed about how and when to use VLOOKUP functions and what are the issues that we might face while using them. This article, on the other hand, will take you to a jou…

PAT——1018. 锤子剪刀布

大家应该都会玩“锤子剪刀布”的游戏&#xff1a;两人同时给出手势&#xff0c;胜负规则如图所示&#xff1a; 现给出两人的交锋记录&#xff0c;请统计双方的胜、平、负次数&#xff0c;并且给出双方分别出什么手势的胜算最大。 输入格式&#xff1a; 输入第1行给出正整数N&am…

leetcode 1239. 串联字符串的最大长度

题目 二进制手表顶部有 4 个 LED 代表 小时&#xff08;0-11&#xff09;&#xff0c;底部的 6 个 LED 代表 分钟&#xff08;0-59&#xff09;。每个 LED 代表一个 0 或 1&#xff0c;最低位在右侧。 例如&#xff0c;下面的二进制手表读取 “3:25” 。 &#xff08;图源&am…

flask redis_在Flask应用程序中将Redis队列用于异步任务

flask redisBy: Content by Edward Krueger and Josh Farmer, and Douglas Franklin.作者&#xff1a; 爱德华克鲁格 ( Edward Krueger) 和 乔什法默 ( Josh Farmer )以及 道格拉斯富兰克林 ( Douglas Franklin)的内容 。 When building an application that performs time-co…

CentOS7下分布式文件系统FastDFS的安装 配置 (单节点)

背景 FastDFS是一个开源的轻量级分布式文件系统&#xff0c;为互联网量身定制&#xff0c;充分考虑了冗余备份、负载均衡、线性扩容等机制&#xff0c;并注重高可用、高性能等指标&#xff0c;解决了大容量存储和负载均衡的问题&#xff0c;特别适合以文件为载体的在线服务&…

剑指 Offer 38. 字符串的排列

题目 输入一个字符串&#xff0c;打印出该字符串中字符的所有排列。 你可以以任意顺序返回这个字符串数组&#xff0c;但里面不能有重复元素。 示例: 输入&#xff1a;s “abc” 输出&#xff1a;[“abc”,“acb”,“bac”,“bca”,“cab”,“cba”] 限制&#xff1a; 1…

前馈神经网络中的前馈_前馈神经网络在基于趋势的交易中的有效性(1)

前馈神经网络中的前馈This is a preliminary showcase of a collaborative research by Seouk Jun Kim (Daniel) and Sunmin Lee. You can find our contacts at the bottom of the article.这是 Seouk Jun Kim(Daniel) 和 Sunmin Lee 进行合作研究的初步展示 。 您可以在文章底…