hopper_如何利用卫星收集的遥感数据轻松对蚱hopper中的站点进行建模

hopper

建筑学与数据科学 (Architectonics and Data Science)

Understanding the site and topography are crucial first step of any architectural project. Site modelling can become very daunting, expensive, or just cumbersome, often having to use various software to just grasp a general awareness of the site. I found the most efficient method using QGIS and Rhino Grasshopper to cover most of my analysis, such as contour mapping, wind flow, solar radiation, sun path and shadow, natural topography, and so on. I also want to control all of these tests parametrically in one software. This is now possible thanks to the wonderful community of Grasshopper who create various plugins.

了解场地和地形是任何建筑项目中至关重要的第一步。 站点建模可能会变得非常艰巨,昂贵或非常麻烦,通常必须使用各种软件来掌握站点的一般知识。 我发现了使用QGIS和Rhino Grasshopper覆盖我的大部分分析的最有效方法,例如等高线图,风流,太阳辐射,太阳路径和阴影,自然地形等。 我还想在一个软件中参数控制所有这些测试。 现在这可以归功于Grasshopper的精彩社区,他们创建了各种插件。

The second step is gathering topographical data. Satellites make data gathering very simple as the data is made freely available. An architectural project is not just defined within its site boundary. The context is very important. Maybe it’s situated in a valley or on a mountain, next to a river that is prone to flooding, or in a city where the adjacent buildings block sunlight. In terms of topography, you would generally require a larger area to perform a proper analysis and understand the surrounding context.

第二步是收集地形数据。 卫星使数据收集变得非常简单,因为可以免费获得数据。 建筑项目不仅在其场地边界内定义。 上下文非常重要。 也许它位于山谷或山脉中,靠近容易泛滥的河流,或者位于邻近建筑物阻挡阳光的城市中。 在地形方面,通常需要较大的区域来执行适当的分析并了解周围的环境。

Image for post
Icongeek26, Icongeek26 , Freepik, Freepik , Eucalyp, Eucalyp , Xnimrodx, Xnimrodx , surangsurang

For this larger area, I would use the satellite gathered data. Remote sensing is increasingly becoming more accurate heading towards the true conditions. Therefore, data from satellite scanning could become a very reliable data source for almost anywhere on the earth.

对于更大的区域,我将使用卫星收集的数据。 朝向真实条件的遥感越来越准确。 因此,来自卫星扫描的数据几乎可以成为地球上任何地方的非常可靠的数据源。

任务 (Task)

Model the site using openly available datasets

使用公开可用的数据集对网站进行建模

目的 (Objective)

My objective is to attain elevation as point values on a grid of 20 and 25 m. I want to use this to strategically position buildings in the masterplan, such that each department/building is at least 20 or 25m apart from each other. I also want to control the heights of buildings, while also maintain the view for each. Therefore, at a later stage, I will use an evolutionary solver setting multi-objective optimisation with the height of the building, elevation, and view as constrains.

我的目标是在20和25 m的网格上获得高程作为点值。 我想用它来在总体规划中对建筑物进行战略性定位,以使每个部门/建筑物之间至少相距20或25m。 我还想控制建筑物的高度,同时还要保持每个建筑物的视图。 因此,在以后的阶段中,我将使用演化求解器设置多目标优化,并以建筑物的高度,立面和视图为约束。

计划 (Plan)

Image for post
Roadmap for modelling a site © Aditya Vinod-Buchinger
网站建模的路线图©Aditya Vinod-Buchinger

1.以DEM(数字高程模型)收集高程数据 (1. Collecting data on elevation as DEM (Digital Elevation Model))

Using Elk, OpenStreetMap, and QGIS

使用Elk,OpenStreetMap和QGIS

Step 1: Download information acquired from remote sensing (satellite scan) that are freely available from USGS as LANDSAT Image for the region. Satellite scanning is increasingly becoming more accurate depending on the site location and could hold valuable information. They can give a good indication of the surrounding topography and could be at a later stage correlated with more accurate data made from surveying.

步骤1:下载从遥感(卫星扫描)获得的信息,该信息可以从USGS免费获得为该地区的LANDSAT图像。 卫星扫描越来越精确,具体取决于站点的位置,并且可以保存有价值的信息。 它们可以很好地指示周围的地形,并且可以在以后与测量得出的更准确的数据相关联。

USGS Earth Explorer > Select region > Download DEM

USGS Earth Explorer >选择区域>下载DEM

Alternatively, you might come in possession of a DEM (.tiff) Survey map from a surveyor.

另外,您可能拥有测量师的DEM(.tiff)测量图。

Step 2: Gather GIS layers such as road network, building layer, waterbody, etc, in Grasshopper using Elk plugin, & OpenStreetMap data.

步骤2:使用Elk插件和OpenStreetMap数据在Grasshopper中收集GIS图层,例如道路网,建筑物层,水体等。

Image for post
Definition for creating a road network © Aditya Vinod-Buchinger
创建道路网的定义©Aditya Vinod-Buchinger

I also found an alternate method using Heron plugin in grasshopper. Heron is a wonderful plugin that imports GIS data directly onto Grasshopper without having to go through Method 1. There are plenty of tutorials online on this. The definitions are also available on Heron@food4rhino in the examples.

我还找到了在草hopper中使用Heron插件的替代方法。 Heron是一个很棒的插件,可以将GIS数据直接导入Grasshopper,而无需经过方法1。在线提供了很多教程。 示例中的Heron @ food4rhino也提供了这些定义。

I followed the Elk option.

我遵循了麋鹿的选择。

2.处理和提取DEM的高程值 (2. Processing and Extracting Elevation values from DEM)

Digital elevations are available in various GIS compatible formats, such as .tiff, ASCII, .shp. For extracting the elevation, I downloaded the DEM raster in .tiff format. Using QGIS GRASS 3.2 (particularly, as this latest release with GRASS can only do the resample step), an open-source geographic information software, the image was processed, resampled and converted to points holding the Z value.

数字高程具有各种GIS兼容格式,例如.tiff,ASCII,.shp。 为了提取高程,我下载了.tiff格式的DEM栅格。 使用开源地理信息软件QGIS GRASS 3.2(特别是因为该最新版本的GRASS只能执行重采样步骤),这是一种开源地理信息软件,图像经过处理,重采样并转换为具有Z值的点。

QGIS with GRASS > Processing Toolbox > Resample to 25 m grid > Calculate Z value > Save layer as points

带有GRASS的QGIS>处理工具箱>重采样到25 m网格>计算Z值>将图层另存为点

Next step is to import this into Grasshopper.

下一步是将其导入Grasshopper。

3.蚱hopper的分析 (3. Analysis in Grasshopper)

Input for this stage is the point cloud with x,y and z values as obtained from QGIS. The output will be parametrically controlled discrete groups based on their elevation.

该阶段的输入是从QGIS获得的具有x,y和z值的点云。 输出将是基于其高程的参数控制的离散组。

As a rule, always parameterise items which you are not necessarily certain of, or want to maintain some flexibility.

通常,请始终对不一定要确定的项目或要保持一定灵活性的项目进行参数化。

For example, size of a room for which area is 10 sq.m but length and breadth are not definite. You would then make length and breadth a function of the area controlled by sliders.

例如,面积为10平方米但长度和宽度不确定的房间大小。 然后,您将使长度和宽度成为由滑块控制的区域的函数。

I want to be able to control the grouping of points based on their elevation in order to parametrically discretise the levels. Parameterising the levels enables control over the criteria for selection of points.

我希望能够基于其高程来控制点的分组,以便参数化水平。 通过对级别进行参数化,可以控制选择点的标准。

Image for post
Inputs added to parameters as points and curves © Aditya Vinod-Buchinger
输入作为点和曲线添加到参数中©Aditya Vinod-Buchinger
Image for post
Cull points outside the site boundary How to leverage on the remote sensing data gathered by satellites and easily model a site in Grasshopper
站点边界之外的剔除点如何利用卫星收集的遥感数据并轻松在Grasshopper中对站点建模
Image for post
Setting a z value range start and end parametrically © Aditya Vinod-Buchinger
通过参数设置z值范围的开始和结束©Aditya Vinod-Buchinger

4.输出 (4. Output)

With this I have;

我有了这个

  1. Organised the levels as controllable parametric features.

    将级别组织为可控制的参数特征。
  2. Parameterised grouping levels into bands at increments of 5 m

    参数化的分组级别按5 m的增量分成频段
  3. Identified low and high-level regions across the site to plan for grazing and farmland as required from my project brief

    根据我的项目简介中的要求,确定了站点的低层和高层区域,以计划放牧和耕地
  4. Set the stage for running an evolutionary solver to generate options at a later stage

    设置运行演化求解器以在以后生成选项的阶段

下一步 (Next Step)

Package 2: Massing and zoning

套餐2:批量和分区

Hello and thanks for checking out my post! Feel free to shoot any questions you may have as comments. Also, get in touch with me on LinkedIn if you would like any help.

您好,感谢您检查我的帖子! 随意拍摄您可能有任何疑问的问题。 另外, 如果您需要任何帮助,请 通过 LinkedIn 与我联系

I am an architect (COA) and tech enthusiast from London. I am interested in the built environment and leveraging data sciences for architecture broadly around design, performance, and insights. I work on various topics from time to time such as generative design, spatial analytics, and energy and environmental studies. I am a Project Manager (AEC) at a biotech innovation company, developing a large-scale sustainable project in North Africa.

我是伦敦的一名建筑师(COA)和技术爱好者。 我对构建环境以及将数据科学广泛应用于设计,性能和洞察力的架构感兴趣。 我不时从事各种主题的工作,例如生成设计,空间分析以及能源和环境研究。 我是一家生物技术创新公司的项目经理(AEC),正在开发北非的大型可持续项目。

翻译自: https://towardsdatascience.com/how-to-leverage-on-the-data-gathered-by-satellites-from-remote-sensing-to-easily-model-a-site-in-afc73a006e43

hopper

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390639.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git 仓库代码迁移步骤记录

迁移远程仓库 // 克隆旧仓库镜像 git clone --mirror [oldRepoUrl]// 添加新仓库地址 cd the_repo git remote add [remoteName] [newRepoUrl]// 推到新的远程库 git push -f --tags [remoteName] refs/heads/*:refs/heads/* 复制代码中括号中的名称需根据自己项目需求替换 更新…

TensorFlow MNIST 入门 代码

其实就是按照TensorFlow中文教程的内容一步步跟着敲的代码。 不过在运行代码的时候遇到代码中加载不到MNIST数据资源,似乎是被墙了((⊙﹏⊙)b) 于是自己手动下载了数据包,放到 MNIST_data/ 文件夹下,代码就能正常运转了…

JavaScript中的基本表单验证

In the past, form validation would occur on the server, after a person had already entered in all of their information and pressed the submit button. 过去,表单验证会在一个人已经输入了所有信息并按下“提交”按钮之后在服务器上进行。 If the informa…

leetcode 877. 石子游戏(dp)

题目 亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。 游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。 亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的…

es6的Map()构造函数

普通的object对象是键值对的集合,但对于它的键却有着严苛的要求,必须是字符串,这给我们平时带来很多的不方便 Map函数类似于对象,但它是一个更加完美的简直对集合,键可以是任意类型 set()方法可以向map实例对象中添加一…

mac里打开隐藏的 library文件夹

打开Finder,单击【前往】,此时只有按住【option】键,就能出现“资源库”的选项。 或者键入 ~/Library 进入 转载于:https://www.cnblogs.com/laolinghunWbfullstack/p/8888124.html

华为开源构建工具_为什么我构建了用于大数据测试和质量控制的开源工具

华为开源构建工具I’ve developed an open-source data testing and a quality tool called data-flare. It aims to help data engineers and data scientists assure the data quality of large datasets using Spark. In this post I’ll share why I wrote this tool, why …

字号与磅值对应关系_终极版式指南:磅值,大写与小写,Em和En破折号等

字号与磅值对应关系Typography is a field that deals with the written word and how letters and characters are presented.印刷术是处理文字以及字母和字符的显示方式的领域。 The same letters can be styled in different ways to convey different emotions. And there…

leetcode 65. 有效数字(正则表达式)

题目 有效数字(按顺序)可以分成以下几个部分: 一个 小数 或者 整数 (可选)一个 ‘e’ 或 ‘E’ ,后面跟着一个 整数 小数(按顺序)可以分成以下几个部分: (…

Swift中的闭包例子

常见的实现, 要熟悉了解, 至于闭包逃逸, 自动闭包这些内容, 可以以后用到时再学吧。 let names ["Chris", "Alex", "Eva", "Barry", "Daniella"]func backward(_ s1: String,…

如何判断自己的编程水平

有的朋友说:当一段时间后的你,再重新看回以前写的代码,会觉得很渣,就证明你有学到新东西了。转载于:https://www.cnblogs.com/viplued/p/7943405.html

数据科学项目_完整的数据科学组合项目

数据科学项目In this article, I would like to showcase what might be my simplest data science project ever.在本文中,我想展示一下有史以来最简单的数据科学项目 。 I have spent hours training a much more complex models in the past, and struggled to …

回溯算法和贪心算法_回溯算法介绍

回溯算法和贪心算法回溯算法 (Backtracking Algorithms) Backtracking is a general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems. It incrementally builds candidates to the solutions, and …

alpha冲刺day8

项目进展 李明皇 昨天进展 编写完个人中心页面今天安排 编写首页逻辑层问题困难 开始编写数据传递逻辑,要用到列表渲染和条件渲染心得体会 小程序框架设计的内容有点忘了,而且比较抽象,需要理解文档举例和具体案例林翔 昨天进展 黑名单用户的…

增加 processon 免费文件数

github 地址:github.com/96chh/Upgra… 关于 ProcessOn 非常好用的思维导图网站,不仅支持思维导图,还支持流程图、原型图、UML 等。比我之前用的百度脑图强多了。 直接登录网站就可以编辑,非常适合我在图书馆公用电脑学习使用。 但…

uni-app清理缓存数据_数据清理-从哪里开始?

uni-app清理缓存数据It turns out that Data Scientists and Data Analysts will spend most of their time on data preprocessing and EDA rather than training a machine learning model. As one of the most important job, Data Cleansing is very important indeed.事实…

高级人工智能之群体智能:蚁群算法

群体智能 鸟群: 鱼群: 1.基本介绍 蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。 蚁群算法的基本步骤…

JavaScript标准对象:地图

The Map object is a relatively new standard built-in object that holds [key, value] pairs in the order that theyre inserted. Map对象是一个相对较新的标准内置对象,按插入顺序保存[key, value]对。 The keys and values in the Map object can be any val…

leetcode 483. 最小好进制

题目 对于给定的整数 n, 如果n的k(k>2)进制数的所有数位全为1,则称 k(k>2)是 n 的一个好进制。 以字符串的形式给出 n, 以字符串的形式返回 n 的最小好进制。 示例 1: 输入:“13” 输…

图像灰度变换及图像数组操作

Python图像灰度变换及图像数组操作 作者:MingChaoSun 字体:[增加 减小] 类型:转载 时间:2016-01-27 我要评论 这篇文章主要介绍了Python图像灰度变换及图像数组操作的相关资料,需要的朋友可以参考下使用python以及numpy通过直接操…