hopper_如何利用卫星收集的遥感数据轻松对蚱hopper中的站点进行建模

hopper

建筑学与数据科学 (Architectonics and Data Science)

Understanding the site and topography are crucial first step of any architectural project. Site modelling can become very daunting, expensive, or just cumbersome, often having to use various software to just grasp a general awareness of the site. I found the most efficient method using QGIS and Rhino Grasshopper to cover most of my analysis, such as contour mapping, wind flow, solar radiation, sun path and shadow, natural topography, and so on. I also want to control all of these tests parametrically in one software. This is now possible thanks to the wonderful community of Grasshopper who create various plugins.

了解场地和地形是任何建筑项目中至关重要的第一步。 站点建模可能会变得非常艰巨,昂贵或非常麻烦,通常必须使用各种软件来掌握站点的一般知识。 我发现了使用QGIS和Rhino Grasshopper覆盖我的大部分分析的最有效方法,例如等高线图,风流,太阳辐射,太阳路径和阴影,自然地形等。 我还想在一个软件中参数控制所有这些测试。 现在这可以归功于Grasshopper的精彩社区,他们创建了各种插件。

The second step is gathering topographical data. Satellites make data gathering very simple as the data is made freely available. An architectural project is not just defined within its site boundary. The context is very important. Maybe it’s situated in a valley or on a mountain, next to a river that is prone to flooding, or in a city where the adjacent buildings block sunlight. In terms of topography, you would generally require a larger area to perform a proper analysis and understand the surrounding context.

第二步是收集地形数据。 卫星使数据收集变得非常简单,因为可以免费获得数据。 建筑项目不仅在其场地边界内定义。 上下文非常重要。 也许它位于山谷或山脉中,靠近容易泛滥的河流,或者位于邻近建筑物阻挡阳光的城市中。 在地形方面,通常需要较大的区域来执行适当的分析并了解周围的环境。

Image for post
Icongeek26, Icongeek26 , Freepik, Freepik , Eucalyp, Eucalyp , Xnimrodx, Xnimrodx , surangsurang

For this larger area, I would use the satellite gathered data. Remote sensing is increasingly becoming more accurate heading towards the true conditions. Therefore, data from satellite scanning could become a very reliable data source for almost anywhere on the earth.

对于更大的区域,我将使用卫星收集的数据。 朝向真实条件的遥感越来越准确。 因此,来自卫星扫描的数据几乎可以成为地球上任何地方的非常可靠的数据源。

任务 (Task)

Model the site using openly available datasets

使用公开可用的数据集对网站进行建模

目的 (Objective)

My objective is to attain elevation as point values on a grid of 20 and 25 m. I want to use this to strategically position buildings in the masterplan, such that each department/building is at least 20 or 25m apart from each other. I also want to control the heights of buildings, while also maintain the view for each. Therefore, at a later stage, I will use an evolutionary solver setting multi-objective optimisation with the height of the building, elevation, and view as constrains.

我的目标是在20和25 m的网格上获得高程作为点值。 我想用它来在总体规划中对建筑物进行战略性定位,以使每个部门/建筑物之间至少相距20或25m。 我还想控制建筑物的高度,同时还要保持每个建筑物的视图。 因此,在以后的阶段中,我将使用演化求解器设置多目标优化,并以建筑物的高度,立面和视图为约束。

计划 (Plan)

Image for post
Roadmap for modelling a site © Aditya Vinod-Buchinger
网站建模的路线图©Aditya Vinod-Buchinger

1.以DEM(数字高程模型)收集高程数据 (1. Collecting data on elevation as DEM (Digital Elevation Model))

Using Elk, OpenStreetMap, and QGIS

使用Elk,OpenStreetMap和QGIS

Step 1: Download information acquired from remote sensing (satellite scan) that are freely available from USGS as LANDSAT Image for the region. Satellite scanning is increasingly becoming more accurate depending on the site location and could hold valuable information. They can give a good indication of the surrounding topography and could be at a later stage correlated with more accurate data made from surveying.

步骤1:下载从遥感(卫星扫描)获得的信息,该信息可以从USGS免费获得为该地区的LANDSAT图像。 卫星扫描越来越精确,具体取决于站点的位置,并且可以保存有价值的信息。 它们可以很好地指示周围的地形,并且可以在以后与测量得出的更准确的数据相关联。

USGS Earth Explorer > Select region > Download DEM

USGS Earth Explorer >选择区域>下载DEM

Alternatively, you might come in possession of a DEM (.tiff) Survey map from a surveyor.

另外,您可能拥有测量师的DEM(.tiff)测量图。

Step 2: Gather GIS layers such as road network, building layer, waterbody, etc, in Grasshopper using Elk plugin, & OpenStreetMap data.

步骤2:使用Elk插件和OpenStreetMap数据在Grasshopper中收集GIS图层,例如道路网,建筑物层,水体等。

Image for post
Definition for creating a road network © Aditya Vinod-Buchinger
创建道路网的定义©Aditya Vinod-Buchinger

I also found an alternate method using Heron plugin in grasshopper. Heron is a wonderful plugin that imports GIS data directly onto Grasshopper without having to go through Method 1. There are plenty of tutorials online on this. The definitions are also available on Heron@food4rhino in the examples.

我还找到了在草hopper中使用Heron插件的替代方法。 Heron是一个很棒的插件,可以将GIS数据直接导入Grasshopper,而无需经过方法1。在线提供了很多教程。 示例中的Heron @ food4rhino也提供了这些定义。

I followed the Elk option.

我遵循了麋鹿的选择。

2.处理和提取DEM的高程值 (2. Processing and Extracting Elevation values from DEM)

Digital elevations are available in various GIS compatible formats, such as .tiff, ASCII, .shp. For extracting the elevation, I downloaded the DEM raster in .tiff format. Using QGIS GRASS 3.2 (particularly, as this latest release with GRASS can only do the resample step), an open-source geographic information software, the image was processed, resampled and converted to points holding the Z value.

数字高程具有各种GIS兼容格式,例如.tiff,ASCII,.shp。 为了提取高程,我下载了.tiff格式的DEM栅格。 使用开源地理信息软件QGIS GRASS 3.2(特别是因为该最新版本的GRASS只能执行重采样步骤),这是一种开源地理信息软件,图像经过处理,重采样并转换为具有Z值的点。

QGIS with GRASS > Processing Toolbox > Resample to 25 m grid > Calculate Z value > Save layer as points

带有GRASS的QGIS>处理工具箱>重采样到25 m网格>计算Z值>将图层另存为点

Next step is to import this into Grasshopper.

下一步是将其导入Grasshopper。

3.蚱hopper的分析 (3. Analysis in Grasshopper)

Input for this stage is the point cloud with x,y and z values as obtained from QGIS. The output will be parametrically controlled discrete groups based on their elevation.

该阶段的输入是从QGIS获得的具有x,y和z值的点云。 输出将是基于其高程的参数控制的离散组。

As a rule, always parameterise items which you are not necessarily certain of, or want to maintain some flexibility.

通常,请始终对不一定要确定的项目或要保持一定灵活性的项目进行参数化。

For example, size of a room for which area is 10 sq.m but length and breadth are not definite. You would then make length and breadth a function of the area controlled by sliders.

例如,面积为10平方米但长度和宽度不确定的房间大小。 然后,您将使长度和宽度成为由滑块控制的区域的函数。

I want to be able to control the grouping of points based on their elevation in order to parametrically discretise the levels. Parameterising the levels enables control over the criteria for selection of points.

我希望能够基于其高程来控制点的分组,以便参数化水平。 通过对级别进行参数化,可以控制选择点的标准。

Image for post
Inputs added to parameters as points and curves © Aditya Vinod-Buchinger
输入作为点和曲线添加到参数中©Aditya Vinod-Buchinger
Image for post
Cull points outside the site boundary How to leverage on the remote sensing data gathered by satellites and easily model a site in Grasshopper
站点边界之外的剔除点如何利用卫星收集的遥感数据并轻松在Grasshopper中对站点建模
Image for post
Setting a z value range start and end parametrically © Aditya Vinod-Buchinger
通过参数设置z值范围的开始和结束©Aditya Vinod-Buchinger

4.输出 (4. Output)

With this I have;

我有了这个

  1. Organised the levels as controllable parametric features.

    将级别组织为可控制的参数特征。
  2. Parameterised grouping levels into bands at increments of 5 m

    参数化的分组级别按5 m的增量分成频段
  3. Identified low and high-level regions across the site to plan for grazing and farmland as required from my project brief

    根据我的项目简介中的要求,确定了站点的低层和高层区域,以计划放牧和耕地
  4. Set the stage for running an evolutionary solver to generate options at a later stage

    设置运行演化求解器以在以后生成选项的阶段

下一步 (Next Step)

Package 2: Massing and zoning

套餐2:批量和分区

Hello and thanks for checking out my post! Feel free to shoot any questions you may have as comments. Also, get in touch with me on LinkedIn if you would like any help.

您好,感谢您检查我的帖子! 随意拍摄您可能有任何疑问的问题。 另外, 如果您需要任何帮助,请 通过 LinkedIn 与我联系

I am an architect (COA) and tech enthusiast from London. I am interested in the built environment and leveraging data sciences for architecture broadly around design, performance, and insights. I work on various topics from time to time such as generative design, spatial analytics, and energy and environmental studies. I am a Project Manager (AEC) at a biotech innovation company, developing a large-scale sustainable project in North Africa.

我是伦敦的一名建筑师(COA)和技术爱好者。 我对构建环境以及将数据科学广泛应用于设计,性能和洞察力的架构感兴趣。 我不时从事各种主题的工作,例如生成设计,空间分析以及能源和环境研究。 我是一家生物技术创新公司的项目经理(AEC),正在开发北非的大型可持续项目。

翻译自: https://towardsdatascience.com/how-to-leverage-on-the-data-gathered-by-satellites-from-remote-sensing-to-easily-model-a-site-in-afc73a006e43

hopper

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390639.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac里打开隐藏的 library文件夹

打开Finder,单击【前往】,此时只有按住【option】键,就能出现“资源库”的选项。 或者键入 ~/Library 进入 转载于:https://www.cnblogs.com/laolinghunWbfullstack/p/8888124.html

leetcode 65. 有效数字(正则表达式)

题目 有效数字(按顺序)可以分成以下几个部分: 一个 小数 或者 整数 (可选)一个 ‘e’ 或 ‘E’ ,后面跟着一个 整数 小数(按顺序)可以分成以下几个部分: (…

数据科学项目_完整的数据科学组合项目

数据科学项目In this article, I would like to showcase what might be my simplest data science project ever.在本文中,我想展示一下有史以来最简单的数据科学项目 。 I have spent hours training a much more complex models in the past, and struggled to …

alpha冲刺day8

项目进展 李明皇 昨天进展 编写完个人中心页面今天安排 编写首页逻辑层问题困难 开始编写数据传递逻辑,要用到列表渲染和条件渲染心得体会 小程序框架设计的内容有点忘了,而且比较抽象,需要理解文档举例和具体案例林翔 昨天进展 黑名单用户的…

uni-app清理缓存数据_数据清理-从哪里开始?

uni-app清理缓存数据It turns out that Data Scientists and Data Analysts will spend most of their time on data preprocessing and EDA rather than training a machine learning model. As one of the most important job, Data Cleansing is very important indeed.事实…

高级人工智能之群体智能:蚁群算法

群体智能 鸟群: 鱼群: 1.基本介绍 蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。 蚁群算法的基本步骤…

leetcode 483. 最小好进制

题目 对于给定的整数 n, 如果n的k(k>2)进制数的所有数位全为1,则称 k(k>2)是 n 的一个好进制。 以字符串的形式给出 n, 以字符串的形式返回 n 的最小好进制。 示例 1: 输入:“13” 输…

图像灰度变换及图像数组操作

Python图像灰度变换及图像数组操作 作者:MingChaoSun 字体:[增加 减小] 类型:转载 时间:2016-01-27 我要评论 这篇文章主要介绍了Python图像灰度变换及图像数组操作的相关资料,需要的朋友可以参考下使用python以及numpy通过直接操…

bigquery_如何在BigQuery中进行文本相似性搜索和文档聚类

bigqueryBigQuery offers the ability to load a TensorFlow SavedModel and carry out predictions. This capability is a great way to add text-based similarity and clustering on top of your data warehouse.BigQuery可以加载TensorFlow SavedModel并执行预测。 此功能…

leetcode 1600. 皇位继承顺序(dfs)

题目 一个王国里住着国王、他的孩子们、他的孙子们等等。每一个时间点,这个家庭里有人出生也有人死亡。 这个王国有一个明确规定的皇位继承顺序,第一继承人总是国王自己。我们定义递归函数 Successor(x, curOrder) ,给定一个人 x 和当前的继…

vlookup match_INDEX-MATCH — VLOOKUP功能的升级

vlookup match电子表格/索引匹配 (SPREADSHEETS / INDEX-MATCH) In a previous article, we discussed about how and when to use VLOOKUP functions and what are the issues that we might face while using them. This article, on the other hand, will take you to a jou…

PAT——1018. 锤子剪刀布

大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示: 现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。 输入格式: 输入第1行给出正整数N&am…

leetcode 1239. 串联字符串的最大长度

题目 二进制手表顶部有 4 个 LED 代表 小时(0-11),底部的 6 个 LED 代表 分钟(0-59)。每个 LED 代表一个 0 或 1,最低位在右侧。 例如,下面的二进制手表读取 “3:25” 。 (图源&am…

flask redis_在Flask应用程序中将Redis队列用于异步任务

flask redisBy: Content by Edward Krueger and Josh Farmer, and Douglas Franklin.作者: 爱德华克鲁格 ( Edward Krueger) 和 乔什法默 ( Josh Farmer )以及 道格拉斯富兰克林 ( Douglas Franklin)的内容 。 When building an application that performs time-co…

CentOS7下分布式文件系统FastDFS的安装 配置 (单节点)

背景 FastDFS是一个开源的轻量级分布式文件系统,为互联网量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,并注重高可用、高性能等指标,解决了大容量存储和负载均衡的问题,特别适合以文件为载体的在线服务&…

剑指 Offer 38. 字符串的排列

题目 输入一个字符串,打印出该字符串中字符的所有排列。 你可以以任意顺序返回这个字符串数组,但里面不能有重复元素。 示例: 输入:s “abc” 输出:[“abc”,“acb”,“bac”,“bca”,“cab”,“cba”] 限制: 1…

前馈神经网络中的前馈_前馈神经网络在基于趋势的交易中的有效性(1)

前馈神经网络中的前馈This is a preliminary showcase of a collaborative research by Seouk Jun Kim (Daniel) and Sunmin Lee. You can find our contacts at the bottom of the article.这是 Seouk Jun Kim(Daniel) 和 Sunmin Lee 进行合作研究的初步展示 。 您可以在文章底…

hadoop将消亡_数据科学家:适应还是消亡!

hadoop将消亡Harvard Business Review marked the boom of Data Scientists in their famous 2012 article “Data Scientist: Sexiest Job”, followed by untenable demand in the past decade. [3]《哈佛商业评论 》在2012年著名的文章“数据科学家:最性感的工作…

剑指 Offer 15. 二进制中1的个数 and leetcode 1905. 统计子岛屿

题目 请实现一个函数,输入一个整数(以二进制串形式),输出该数二进制表示中 1 的个数。例如,把 9 表示成二进制是 1001,有 2 位是 1。因此,如果输入 9,则该函数输出 2。 示例 1&…

httpd2.2的配置文件常见设置

目录 1、启动报错:提示没有名字fqdn2、显示服务器版本信息3、修改监听的IP和Port3、持久连接4 、MPM( Multi-Processing Module )多路处理模块5 、DSO:Dynamic Shared Object6 、定义Main server (主站点) …