【数学建模】--灰色关联分析

系统分析:

一般的抽象系统,如社会系统,经济系统,农业系统,生态系统,教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。人们常常希望知道在众多的因素中,哪些是主要因素,哪些是次要因素;哪些因素对系统发展影响大,哪些因素对系统发展影响小;那些因素对系统发展起推动作用需强化发展;那些因素对系统发展起阻碍作用需加以抑制;……这些都是系统分析中人们普遍关心的问题。例如,粮食生产系统,人们希望提高粮食总产量,而影响粮食总产量的因素是多方面的,有播种面积以及水利,化肥,土壤,种子,劳力,气候,耕作技术和政策环境等。为了实现少投入多产出,并取得良好的经济效益,社会效益和生态效益,就必须进行系统分析。

数理统计的不足之处:

灰色关联的基本思想:

灰色关联分析原理:灰色关联分析(Grey Relational Analysis)是一种用于研究变量之间关联性的方法,特别适用于样本数据较少、样本特征缺失或数据质量不高的情况下。它是由灰色系统理论发展而来,旨在分析和描述变量之间的关联程度。

在灰色关联分析中,首先将各个变量的数据进行数值化,常采用标准化或归一化的方法,将变量的取值范围转化为[0, 1]之间。然后,通过计算变量之间的关联度,确定它们之间的关联程度。

灰色关联分析的步骤主要包括以下几个方面:

1.数据标准化:将原始数据进行标准化处理,通常采用归一化或标准化方法,使得各个变量具有相同的数值范围。

2.构建关联系数矩阵:计算各个变量之间的关联系数,一般采用灰色关联度或灰色斜率关联度。关联系数表示了变量之间的相对关联程度。

3.确定关联度序列:根据计算得到的关联系数,确定关联度序列,即将各个变量按照关联度的大小排序。

4.确定关联度权重:根据关联度序列,计算关联度权重,即各个变量在总关联系数中的贡献比例。

5.计算灰色关联度:通过将各个变量的关联系数与关联度权重相乘,并进行累加,计算出灰色关联度。灰色关联度可以反映变量之间的关联程度。

通过灰色关联度的计算,可以得到各个变量之间的关联情况,进而进行数据分析和决策支持。灰色关联分析常被应用于多个领域,包括经济、管理、环境、工程等,用于评估指标之间的关联强度、寻找关键因素等。

需要注意的是,灰色关联分析的结果是相对的,不具备精确的定量意义,应结合实际问题和其他分析方法进行综合评估和判断。

例题以及Excel的实操:在excel中选择数据-插入-推荐图标-修改信息。

2.确定分析数列:

母序列:能反映系统特征值的数据序列,类似于因变量Y,此处记为X0

子序列:有影响系统行为的因素组成的数据序列。类似于自变量x,此处记为(x1,x2……xm)

3.对变量进行预处理:

目的:去量纲,缩小变量范围简化计算。

方法:每个元素/所在列的列向量的均值。

4.计算子序列中各个指标与母序列的关联系数

先求每子列元素与母列之间差的绝对值,在求出矩阵中所有元素的最小值a和最大值b。且取分辨系数p/rho=0.5

在通过公式计算

5.求灰色关联度:

公式:每列子序列与母序列关联系数的均值。

6.分析结果进行总结。

MATLAB代码实现:

参考代码:

%% 灰色关联分析用于系统分析例题的讲解
clear;clc
load gdp.mat  % 导入数据 一个6*4的矩阵
% 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来
% 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内
Mean = mean(gdp);  % 求出每一列的均值以供后续的数据预处理
gdp = gdp ./ repmat(Mean,size(gdp,1),1);  %size(gdp,1)=6, repmat(Mean,6,1)可以将矩阵进行复制,复制为和gdp同等大小,然后使用点除(对应元素相除),这些在第一讲层次分析法都讲过
disp('预处理后的矩阵为:'); disp(gdp)
Y = gdp(:,1);  % 母序列
X = gdp(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))

讨论:

灰色分析用于综合评价问题:

步骤:

MATLAB代码实现:

这里的代码和博主之前TOPSIS算法一文:数学建模——TOPSIS法_Wei&Yan的博客-CSDN博客

前面的操作都一致,只是在最后添加上了灰色相关分析的方法

步骤:

  1. 先对矩阵进行预处理:每个元素/所在列的均值
  2. 构造母序列和子序列

母序列:取每一行的max构成一个列向量

子序列:预处理后的矩阵

3.计算灰色关联度

先求每个元素与母序列差的绝对值矩阵,再求两级最大/小差。

最后利用公式求灰色关联度

4.求权重:每列的均值/每列均值的和

5.求得分:(矩阵中每个元素*其所在列的权重)的矩阵的列和。(得到一个)

6.归一化得分:每个元素/向量和

图形对比:

参考代码:

这里只参考了主函数加上带有灰色相关分析的代码,其他自定义函数可参考博主原来的文章TOPSIS算法:数学建模——TOPSIS法_Wei&Yan的博客-CSDN博客

%% 灰色关联分析用于综合评价模型例题的讲解
clear;clc
load data_water_quality.mat
% 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来
% 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内%%  判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);   %1if Judge == 1Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]disp('请输入需要处理的这些列的指  标类型(1:极小型, 2:中间型, 3:区间型) ')Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]% 注意,Position和Type是两个同维度的行向量for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数% 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量enddisp('正向化后的矩阵 X =  ')disp(X)
end%% 对正向化后的矩阵进行预处理
Mean = mean(X);  % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);  
disp('预处理后的矩阵为:'); disp(Z)%% 构造母序列和子序列
Y = max(Z,[],2);  % 母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; % 子序列就是预处理后的数据矩阵%% 计算得分
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma));  % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2);   % 未归一化的得分
stand_S = score / sum(score);   % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend') % 进行排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39012.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode 面试题 02.05 链表求和

⭐️ 题目描述 🌟 leetcode链接:面试题 02.05 链表求和 ps: 首先定义一个头尾指针 head 、tail,这里的 tail 是方便我们尾插,每次不需要遍历找尾,由于这些数是反向存在的,所以我们直接加起来若…

如何安装Python?

如何安装Python? 安装Python非常简单,让我们一步步来进行。 1. 访问官方网站 首先,您需要访问Python官方网站(https://www.python.org/)。在首页上,您会看到一个大大的「Downloads」按钮,点击…

【Redis实践篇】使用Redisson 优雅实现项目实践过程中的5种场景

文章目录 1.前言2.使用方式1. 添加Redisson依赖:2. 配置Redis连接信息3. 使用场景3.1. 分布式锁3.2. 限流器(Rate Limiter)3.3. 可过期的对象(Expirable Object)3.4. 信号量(Semaphore)3.5. 分布…

任我行CRM系统存在 SQL注入漏洞[2023-HW]

任我行CRM系统存在 SQL注入漏洞 一、 产品简介二、 漏洞概述三、 复现环境四、 漏洞复现小龙POC又是一通哈拉少 五、 修复建议 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及…

学习ts(二)数据类型(接口和对象类型、数组类型)

interface 重名会重合到一起 如果两个interface名称相同,会把两个合到一起 重复定义同一个需要类型相同 不能多或者减少属性 设置任意key 当定义接口返回数据时,我们不确定接口会返回多少,知道所需要的固定属性,其余属性可以…

学习笔记十四:K8S最小调度单元POD概述

K8S最小调度单元POD概述 k8s核心资源Pod介绍Pod是什么Pod如何管理多个容器Pod网络Pod存储代码自动发版更新收集业务日志 Pod工作方式自主式Pod控制器管理的Pod(防误删除) 如何基于Pod运行应用 k8s核心资源Pod介绍 K8s官方文档:https://kubernetes.io/ K8s中文官方文…

【博客692】grafana如何解决step动态变化时可能出现range duration小于step

grafana如何解决step动态变化时可能出现range duration小于step 1、grafana中的step和resolution grafana中的 “step” grafana本身是没有提供step参数的,因为仪表盘根据查询数据区间以及仪表盘线条宽度等,对于不同查询,相同的step并不能…

校园外卖小程序怎么做

校园外卖小程序是为满足校园内学生和教职员工的外卖需求而开发的一种应用程序。它涵盖了从用户端、商家端、骑手端、电脑管理员到小票打印、多商户入驻等多个方面的功能,以下将逐一介绍。 1. 用户端功能:校园外卖小程序为用户提供了便捷的订餐和外卖服务…

深入理解epoll

文章目录 概述1. epoll_create - 创建一个epoll实例2. epoll_ctl - 控制epoll实例的事件结构体介绍events取值:data: 联合体(共用体): 3. epoll_wait - 等待事件发生伪代码总结 概述 在网络编程中,高效地处…

每天一道leetcode:797. 所有可能的路径(图论中等深度优先遍历)

今日份题目: 给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序) graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节…

​五金件机器视觉定位​并获取外观轮廓软硬件视觉方案

【检测目的】 五金件机器视觉定位,视觉检测五金件轮廓并矫正五金件位置进行涂油 【客户要求】 FOV:540*400mm 【拍摄与处理效图一】 【拍摄与处理效图二】 【实验原理及说明】 【方案评估】 根据目前的图像和处理结果来看,可以检测出产品轮廓并进行位置…

HCIP-OpenStack搭建

1、OpenStack概述 OpenStack是一种云操作系统,OpenStack是虚拟机、裸金属和容器的云基础架构。可控制整个数据中心的大型计算、存储和网络资源池,所有资源都通过具有通用身份验证机制的API进行管理和配置。管理员也可通过Web界面控制,同时授…

Qt 之 QPushButton,信号与槽机制

文章目录 前言一、QPushButton二、信号与槽机制总结 前言 一、QPushButton 当我们开发基于Qt框架的图形用户界面(GUI)应用程序时,经常需要在界面上添加按钮来实现用户交互。Qt提供了一个名为 QPushButton 的类作为按钮控件的实现。QPushButt…

WSL2 Ubuntu子系统安装OpenCV

文章目录 前言一、基本概念二、操作步骤1.下载源码2.安装依赖3.运行编译4.配置路径 前言 OpenCV用C语言编写,它的主要接口也是C语言,但是依然保留了大量的C语言接口。该库也有大量的Python, Java and MATLAB/OCTAVE (版本2.5)的接口。这些语…

[python] 安装numpy+scipy+matlotlib+scikit-learn及问题解决

这篇文章主要讲述Python如何安装Numpy、Scipy、Matlotlib、Scikit-learn等库的过程及遇到的问题解决方法。最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所帮助吧!你可能遇到的问题包括: ImportError: N…

高并发数据抓取实战:使用HTTP爬虫ip提升抓取速度

又到每天一期学习爬虫的时间了,作为一名专业的爬虫程序员,今天要跟你们分享一个超实用的技巧,就是利用HTTP爬虫ip来提升高并发数据抓取的速度。听起来有点高大上?别担心,我会用通俗易懂的话来和你们说,让你…

自动切换HTTP爬虫ip助力Python数据采集

在Python的爬虫世界里,你是否也被网站的IP封锁问题困扰过?别担心,我来教你一个终极方案,让你的爬虫自动切换爬虫ip,轻松应对各种封锁和限制!快来跟我学,让你的Python爬虫如虎添翼! 首…

uniapp-微信小程序篇

uniapp-微信小程序篇 一、创建项目(以Vue3TS 项目为示例) 可以通过命令行的方式创建也可以通过HBuilderX进行创建(通过HBuilderX创建的项目建议选择最简单的模板),个人建议使用命令行方式。 (1) 命令行方式: npx degit dcloudio…

怎么学习AJAX相关技术? - 易智编译EaseEditing

学习AJAX(Asynchronous JavaScript and XML)相关技术可以让你实现网页的异步数据交互,提升用户体验。以下是一些学习AJAX技术的步骤和资源: HTML、CSS和JavaScript基础: 首先,确保你已经掌握了基本的HTML…

【Redis】Redis三种集群模式-主从、哨兵、集群各自架构的优点和缺点对比

文章目录 前言1. 单机模式2. 主从架构3. 哨兵4. 集群模式总结 前言 如果Redis的读写请求量很大,那么单个实例很有可能承担不了这么大的请求量,如何提高Redis的性能呢?你也许已经想到了,可以部署多个副本节点,业务采用…