各类软件马斯洛需求层次分析_需求的分析层次

各类软件马斯洛需求层次分析

When I joined Square, I was embedded on a product that had been in-market for a year but didn’t have dedicated analytics support.

当我加入Square时,我被嵌入了已经上市一年但没有专门的分析支持的产品。

As you might expect, the team had a large backlog of curiosities:

如您所料,该团队积压了很多好奇心:

  • What metrics should we be tracking?

    我们应该跟踪哪些指标?

  • Why is this metric lower than I’d expect?

    为什么这个指标低于我的预期?

  • Do we have data on XYZ?

    我们有关于XYZ的数据吗?

  • I have this idea for an A/B test! Can you help me implement it?

    我对A / B测试有这个想法! 你能帮我实现吗?

  • What % of users use XYZ feature?

    百分之几的用户使用XYZ功能?

  • Can we use machine learning? I heard clustering is a great way to understand our user base!

    我们可以使用机器学习吗? 我听说集群是了解我们的用户群的好方法!

Candidly, I was overwhelmed. Where should I start? What’s the most important thing to do right now? What should I be doing in three months, a year?

坦率地说,我不知所措。 我应该从哪里开始? 现在最重要的事情是什么? 一年三个月后我应该做什么?

Yearning for a framework to guide me, I came upon the AI hierarchy of needs, modeled after Maslow’s hierarchy of needs. While the specifics didn’t directly map to product analytics, I realized the overarching of a hierarchy did.

渴望有一个指导我的框架,我以马斯洛的需求层次为模型,建立了AI需求 层次 。 尽管具体细节并没有直接映射到产品分析,但我意识到层次结构的概述确实可以实现。

需求的分析层次结构 (The Analytics Hierarchy of Needs)

The general idea of the analytics hierarchy of needs is that you should not move up the hierarchy until you’ve done the basics in the prior step (i.e. no deep analysis before metrics are defined & tracked, no dashboards built before you’ve started collecting & cleaning your data, etc).

需求分析层次结构的总体思想是,在上一步完成基础知识之前,您不应该上移层次结构(即,在定义和跟踪指标之前不进行深入分析,在开始收集之前不构建仪表板)并清理您的数据等)。

Pyramid showing that collecting data comes before cleaning data, defining & tracking metrics comes before analyzing data, etc
The Analytics Hierarchy of Needs. Image by Author需求的Analytics层次结构。 图片作者

1.收集 (1. Collect)

Wait, how are we not tracking usage of our flagship feature?!

等等,我们如何不跟踪旗舰功能的使用?

This isn’t fun to hear. You can’t manufacture data that you wish existed in hindsight!

听到这不好玩。 您无法制造出事后希望存在的数据!

Before doing anything else, an analyst’s first priority should be to ensure basic event logging & data modeling for key entities. This can be informed by your own product intuition and key questions stakeholders have of your data.

在执行其他任何操作之前,分析师的首要任务应该是确保关键实体的基本事件记录和数据建模。 这可以通过您自己的产品直觉和利益相关者对您的数据的关键问题来了解。

Determining what to log and how to log it can be intimidating. Consider mapping out an Entity Relationship Diagram (ERD) for your key entities, and giving engineering the basic event logging guidance of LATAM (Log All Taps And [Relevant] Metadata).

确定要记录什么以及如何记录它可能会令人生畏。 考虑映射出一个实体关系图(ERD)为您的实体按键,并给予工程LATAM的基本事件日志记录的指导(L OG 者A 牛逼 APS [相关] 中号 etadata)。

2.清洁 (2. Clean)

Hey Ryan, can you quickly pull this for me?

嘿,瑞安,你能帮我拉一下吗?

Sure, let me just SELECT * FROM some_pristine_table_that_does_not_exist;

当然,让我选择SELECT * FROM some_pristine_table_that_does_not_exist;

Your engineering team will likely emit data in disparate, narrow tables. Before dashboarding & diving into analysis, you should ETL your data into wider, standardized tables. This will make your analyses and dashboards far more scalable & easier to build.

您的工程团队可能会在不同的狭窄表格中发出数据。 在进行仪表板分析和深入分析之前,您应该将数据ETL到更大的标准化表中。 这将使您的分析和仪表板更具可扩展性,并且更易于构建。

Consider a per-user-per-day summary table as a place to start. Your stakeholders can inform the columns: ask them what common questions they wish they knew but are unable to answer.

考虑将“每用户每天”摘要表作为开始的地方。 您的利益相关者可以告知各列:询问他们希望他们知道但无法回答的常见问题。

3.定义和跟踪 (3. Define & Track)

Why is revenue lower than I expected this month?

为什么收入低于我本月的预期?

Now that your data is organized, it’s time to break down your funnel.

现在,您的数据已经组织好了,是时候分解渠道了。

Usually people care most about active users and $$. In order to understand what’s driving these, you need to map your product funnel to a flow chart. Consider this basic SaaS product as an example:

通常,人们最关心活跃用户和$$。 为了了解驱动这些因素的原因,您需要将产品渠道映射到流程图。 以这个基本的SaaS产品为例:

> Revenue = (active users) * (average subscription cost per user)

>收入=(活跃用户)*(每位用户的平均订阅费用)

>> Active users = (new conversions) + (retained users)

>>有效用户=(新转化)+(保留用户)

>>> New conversions = (free trials) * (average conversion %)

>>>新转化=(免费试用)*(平均转化百分比)

And so on. Once you’ve mapped out this flow chart and built dashboards tracking each metric, you’re ready to analyze your funnel.

等等。 绘制完该流程图并构建了跟踪每个指标的仪表板之后,就可以分析渠道了。

4.分析 (4. Analyze)

Interesting churn analysis, Ryan, but our retention is best in class. Conversion is top of mind for me right now.

有趣的客户流失分析,Ryan,但我们的保留率是同类中最好的。 现在,转换是我的首要任务。

Once my team had each of our funnel metrics defined and tracked, we assigned a Red/Amber/Green status to each. We did this by comparing each metric to internal benchmarks, external benchmarks, and our gut; this helped us determine our biggest areas of opportunity.

一旦我的团队定义并跟踪了每个渠道指标,我们便为每个渠道分配了红色/琥珀色/绿色状态 。 为此,我们将每个指标与内部基准,外部基准和我们的直觉进行了比较; 这有助于我们确定最大的机会领域。

For example: why do a deep dive into retention if it’s beating benchmarks?

例如:如果要超越基准率,为什么还要深入研究保留率?

Once you have your top area(s) of opportunity, you can do some basic heuristic analysis on each. There’s often a noteworthy trend when visualizing a metric by cohort, acquisition channel, and basic user demographics.

一旦有了最重要的机会领域,就可以对每个机会进行一些基本的启发式分析。 通过同类群组,获取渠道和基本用户人口统计数据可视化指标时,通常会有一个值得注意的趋势。

5.优化和预测 (5. Optimize & Predict)

So, you’re finally going to do that clustering analysis I heard about?

那么,您最终将要进行我听说过的聚类分析?

You’re collecting data and you’ve cleaned it. You’ve defined your metrics and you’re tracking them. You’ve analyzed your metrics and outlined key areas for improvement.

您正在收集数据,并且已清理数据。 您已经定义了指标并正在跟踪它们。 您已经分析了指标并概述了需要改进的关键领域。

Congratulations: you can now do the ‘sexy’ stuff. 😎

恭喜:您现在可以做“性感”的事情。 😎

A/B testing can give you confidence that one user experience is more optimal than another. If you’ve been following the analytics hierarchy of needs, this is well-timed: as the more users you have, the higher statistical confidence your experiments will yield.

A / B测试可以使您确信一种用户体验比另一种用户体验更为理想。 如果您一直遵循需求的分析层次结构,那么时机就很好:随着用户的增多,实验将产生更高的统计信心。

Supervised machine learning can help you understand what is predictive of user behavior — for example, what actions or demographics lead to conversion or sustained usage.

有监督的机器学习可以帮助您了解什么可以预测用户的行为,例如,哪些操作或人口统计信息会导致转化或持续使用。

Unsupervised machine learning can help you understand patterns among your users you weren’t aware of (hello, clustering!).

无监督机器学习可以帮助您了解您不了解的用户中的模式( 您好,集群! )。

However, a word of caution: just because you’ve reached the top of the hierarchy does not mean that machine learning is the best solution to all your questions. Simple heuristics can often yield a better outcome, as they’re quicker to implement and usually more digestible.

但是,请注意:仅仅因为您已达到层次结构的最高层, 并不意味着机器学习是所有问题的最佳解决方案。 简单的启发式方法通常可以产生更好的结果,因为它们实施起来更快,并且通常更易于消化。

综上所述 (In summary)

Don’t be the analyst explaining the SHAP values of your XGBoost model while your new flagship feature isn’t being tracked.

当您的新旗舰功能没有被追踪时,不要当分析师来解释您的XGBoost模型的SHAP值。

Image for post
Image by Author
图片作者

翻译自: https://towardsdatascience.com/the-analytics-hierarchy-of-needs-6d57d0e205e2

各类软件马斯洛需求层次分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389686.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL的变量分类总结

在MySQL中,my.cnf是参数文件(Option Files),类似于ORACLE数据库中的spfile、pfile参数文件,照理说,参数文件my.cnf中的都是系统参数(这种称呼比较符合思维习惯),但是官方…

亚洲国家互联网渗透率_发展中亚洲国家如何回应covid 19

亚洲国家互联网渗透率The COVID-19 pandemic has severely hit various economies across the world, with global impact estimated between USD 6.1 trillion and USD 9.1 trillion, equivalent to a loss of 7.1% to 10.5% of global gross domestic product (GDP).[1] More…

snake4444勒索病毒成功处理教程方法工具达康解密金蝶/用友数据库sql后缀snake4444...

*snake4444勒索病毒成功处理教程方法 案例:笔者负责一个政务系统的第三方公司的运维,上班后发现服务器的所有文件都打不开了,而且每个文件后面都有一个snake4444的后缀,通过网络我了解到这是一种勒索病毒。因为各个文件不能正常打…

有史以来最漂亮的游戏机

The recent reveal of the PlayStation 5’s design has divided the gaming world. There are those who appreciate its bold, daring industrial design and those who would have preferred something a little less outlandish; perhaps a little more traditional.吨 他最…

墨刀原型制作 位置选择_原型制作不再是可选的

墨刀原型制作 位置选择The ‘role’ of a designer has been a topic of discussion several many years now. In the past decade, the role of a Designer got split into several different roles like — Graphic Designer, User Experience Designer, Interaction Designe…

eclipse maven 构建简单springmvc项目

环境&#xff1a;eclipse Version: Oxygen.3a Release (4.7.3a) 创建maven Project项目&#xff0c;目录结构 修改工程的相关编译属性 修改pop.xml&#xff0c;引入springmvc相关包 <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.…

使用协同过滤推荐电影

ALSO, ARE RECOMMENDER SYSTEMS INFLUENCING OUR TASTE??此外&#xff0c;推荐系统是否影响我们的口味&#xff1f; An excerpt on creating a movie recommender system similar to the OTT platforms.有关创建类似于OTT平台的电影推荐系统的摘录。 INTRODUCTION介绍 For…

数据暑假实习面试_面试数据科学实习如何准备

数据暑假实习面试Unfortunately, on this occasion, your application was not successful, and we have appointed an applicant who…不幸的是&#xff0c;这一次&#xff0c;您的申请没有成功&#xff0c;我们已经任命了一位符合以下条件的申请人&#xff1a; Sounds famili…

谷歌 colab_如何在Google Colab上使用熊猫分析

谷歌 colabRecently, pandas have come up with an amazing open-source library called pandas-profiling. Generally, EDA starts by df.describe(), df.info() and etc which to be done separately. Pandas_profiling extends the general data frame report using a singl…

Java之生成Pdf并对Pdf内容操作

虽说网上有很多可以在线导出Pdf或者word或者转成png等格式的工具&#xff0c;但是我觉得还是得了解知道是怎么实现的。一来&#xff0c;在线免费转换工具&#xff0c;是有容量限制的&#xff0c;达到一定的容量时&#xff0c;是不能成功导出的;二来&#xff0c;业务需求&#x…

边际概率条件概率_数据科学家解释的边际联合和条件概率

边际概率条件概率Probability plays a very important role in Data Science, as Data Scientist regularly attempt to draw statistical inferences that could be used to predict data or analyse data better.P robability起着数据科学非常重要的作用&#xff0c;为数据科…

袋装决策树_袋装树是每个数据科学家需要的机器学习算法

袋装决策树袋装树木介绍 (Introduction to Bagged Trees) Without diving into the specifics just yet, it’s important that you have some foundation understanding of decision trees.尚未深入研究细节&#xff0c;对决策树有一定基础了解就很重要。 From the evaluatio…

[JS 分析] 天_眼_查 字体文件

0. 参考 js分析 猫_眼_电_影 字体文件 font-face 1. 分析 1.1 定位目标元素 1.2 查看网页源代码 1.3 requests 请求提取得到大量错误信息 对比猫_眼_电_影抓取到unicode编码&#xff0c;天_眼_查混合使用正常字体和自定义字体&#xff0c;难点在于如何从 红 转化为 美。 一开始…

经天测绘测量工具包_公共土地测量系统

经天测绘测量工具包部分-乡镇第一师 (Sections — First Divisions of Townships) The PLSS Townships are typically divided into 36 Sections (nominally one mile on a side), but in the national standard this feature is called the first division because Townships …

洛谷 P4012 深海机器人问题【费用流】

题目链接&#xff1a;https://www.luogu.org/problemnew/show/P4012 洛谷 P4012 深海机器人问题 输入输出样例 输入样例#1&#xff1a; 1 1 2 2 1 2 3 4 5 6 7 2 8 10 9 3 2 0 0 2 2 2 输出样例#1&#xff1a; 42 说明 题解&#xff1a;建图方法如下&#xff1a; 对于矩阵中的每…

opencv实现对象跟踪_如何使用opencv跟踪对象的距离和角度

opencv实现对象跟踪介绍 (Introduction) Tracking the distance and angle of an object has many practical uses, especially in robotics. This tutorial explains how to get an accurate distance and angle measurement, even when the target is at a strong angle from…

spring cloud 入门系列七:基于Git存储的分布式配置中心--Spring Cloud Config

我们前面接触到的spring cloud组件都是基于Netflix的组件进行实现的&#xff0c;这次我们来看下spring cloud 团队自己创建的一个全新项目&#xff1a;Spring Cloud Config.它用来为分布式系统中的基础设施和微服务提供集中化的外部配置支持&#xff0c;分为服务端和客户端两个…

熊猫数据集_大熊猫数据框的5个基本操作

熊猫数据集Tips and Tricks for Data Science数据科学技巧与窍门 Pandas is a powerful and easy-to-use software library written in the Python programming language, and is used for data manipulation and analysis.Pandas是使用Python编程语言编写的功能强大且易于使用…

图嵌入综述 (arxiv 1709.07604) 译文五、六、七

应用 图嵌入有益于各种图分析应用&#xff0c;因为向量表示可以在时间和空间上高效处理。 在本节中&#xff0c;我们将图嵌入的应用分类为节点相关&#xff0c;边相关和图相关。 节点相关应用 节点分类 节点分类是基于从标记节点习得的规则&#xff0c;为图中的每个节点分配类标…

聊聊自动化测试框架

无论是在自动化测试实践&#xff0c;还是日常交流中&#xff0c;经常听到一个词&#xff1a;框架。之前学习自动化测试的过程中&#xff0c;一直对“框架”这个词知其然不知其所以然。 最近看了很多自动化相关的资料&#xff0c;加上自己的一些实践&#xff0c;算是对“框架”有…