mysql那本书适合初学者_3本书适合初学者

mysql那本书适合初学者

为什么要书籍? (Why Books?)

The internet is a treasure-trove of information on a variety of topics. Whether you want to learn guitar through Youtube videos or how to change a tire when you are stuck on the side of the road, the internet allows us to learn skills faster and easier than ever before.

互联网是有关各种主题的信息宝库。 无论您是想通过Youtube视频学习吉他,还是想在路边被困时如何换轮胎,互联网都使我们比以往任何时候都更快,更轻松地学习技能。

I am a big supporter of using the internet to learn and improve your data analytics skills. There are loads of resources on personal blogs, Youtube, and my favorite site: Towards Data Science! However, I find that books are still an extremely useful medium for learning these skills.

我大力支持使用互联网来学习和提高您的数据分析技能。 个人博客,Youtube和我最喜欢的网站上都有大量资源:迈向数据科学! 但是,我发现书籍仍然是学习这些技能的极其有用的媒介。

Online resources are fragmented — written from different authors, expecting various levels of previous experience, and contain slight differences between them. This can make it difficult to make connections between these resources when you are first trying to learn analytics. That is why I think books are a great additional resource to use in your education.

在线资源是零散的-由不同的作者撰写,期望各个级别的先前经验,并且两者之间存在细微差异。 当您首次尝试学习分析时,这可能使在这些资源之间建立连接变得困难。 这就是为什么我认为书籍是您的教育中可以使用的大量额外资源的原因。

I have compiled a list of three of my favorite books that I think provide a great foundation in data analytics. While this list is by no means exhaustive, I encourage you to take a look!

我整理了一份我最喜欢的三本书的清单,我认为它们为数据分析奠定了良好的基础。 虽然此列表绝非详尽无遗,但我鼓励您看看!

对于那些知道如何编码的人: (For Those Who Know How to Code:)

用于数据分析的Python:使用Pandas,NumPy和IPython处理数据 (Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython)

Image for post
Source: Amazon.com
资料来源:Amazon.com

Python for Data Analysis by Wes McKinney is a great book for those who are interested in using Python as their tool of choice. Python is an extremely powerful and flexible tool for data modeling, analysis, and prediction.

Wes McKinney撰写的Python for Data Analysis是一本很棒的书,适合那些对使用Python作为首选工具感兴趣的人。 Python是用于数据建模,分析和预测的极其强大且灵活的工具。

With the help of packages such as Pandas and Numpy, python is a great environment to learn the tools necessary to work as a data scientist. In addition, many companies use python in their workflow and it can be even used in production environments.

在Pandas和Numpy等软件包的帮助下,python是学习作为数据科学家所需的工具的绝佳环境。 此外,许多公司在其工作流程中都使用python,甚至可以在生产环境中使用它。

This book is very dense but packed with lots of good information and can be used as a reference for years to come.

这本书非常密集,但是包含很多有用的信息,并且可以在以后的几年中用作参考。

对于那些了解入门统计信息的人: (For Those Who Know Introductory Statistics:)

应用预测建模 (Applied Predictive Modeling)

Image for post
Source: Amazon.com
资料来源:Amazon.com

The cover of Applied Predictive Modeling may not look exciting — but you know what they say: “Don’t judge a book by its cover.” This book assumes you have a small statistics foundation and sits comfortably above the level of an introductory statistics course.

“应用预测建模”的封面可能看起来并不令人兴奋-但您知道他们在说什么:“不要凭封面判断一本书。” 本书假定您的统计基础很小,并且处于统计学入门级水平之上。

Don’t be afraid by this book's statistic nature, however. Applied Predictive Modeling contains treasure troves of heuristics and tips for various real-world projects. In addition to learning valuable algorithms and tools, the book explains why specific decisions were made and how to make them yourself. The authors also provide various real-world examples using messy and real data and explain what decisions were made and why.

但是,不要担心本书的统计性质。 应用预测建模包含启发式的宝库和各种实际项目的技巧。 除了学习有价值的算法和工具外,这本书还解释了为什么要做出特定的决策以及如何自己做出决策。 作者还提供了使用凌乱和真实数据的各种实际示例,并解释了做出了哪些决策以及为什么做出了决策。

If you wish to dig into predictive analytics in real-world scenarios, this is the book to get.

如果您想深入研究实际场景中的预测分析,这本书是您可以获取的。

对于那些在家中使用电子表格的人: (For Those That Feel At Home In Spreadsheets:)

数据智能:使用数据科学将信息转化为洞察力 (Data Smart: Using Data Science to Transform Information into Insight)

Image for post
Source: Amazon.com
资料来源:Amazon.com

Starting your data science journey can be scary and overwhelming. Not only are data scientists analysts, but they oftentimes also programmers, presenters, and database administrators among other things. However, you don’t need to dive headfirst into Python or R if you don’t want to.

开始数据科学之旅可能会让人感到恐惧和压倒性。 数据科学家分析师不仅如此,而且他们通常还包括程序员,演示者和数据库管理员。 但是,如果您不想这么做,则无需先深入研究Python或R。

Data-Smart provides a great foundation for those that are new to programming and data science but want to provide value. If you are semi-comfortable in a spreadsheet application such as Excel (and want to stay that way for now) this book is great for you.

Data-Smart为那些刚接触编程和数据科学但希望提供价值的人提供了良好的基础。 如果您对电子表格应用程序(例如Excel)不满意(并希望暂时保持这种状态),则这本书非常适合您。

You may not be able to create complex models ready for production in a spreadsheet, but lots of valuable insights can be gained from these programs and you can learn to provide serious value to your organization.

您可能无法在电子表格中创建可用于生产的复杂模型,但是可以从这些程序中获得许多有价值的见解,并且可以学习为组织提供重要价值。

不要在这里停下来 (Don’t Stop Here)

Books are an amazing resource for learning new skills. No matter your background or goals, there is a book out there for you. However, while I tout the greatness of books, don’t let them be your only resource.

书籍是学习新技能的绝佳资源。 无论您的背景或目标如何,都有适合您的书。 但是,尽管我吹嘘书籍的伟大之处,但不要让它们成为您唯一的资源。

Watch youtube videos, connect with other data scientists, take training or classes, and of course read blogs and publications such as Towards Data Science. And most importantly, never stop learning!

观看youtube视频,与其他数据科学家联系,参加培训或课程,当然还要阅读博客和出版物,例如“迈向数据科学”。 最重要的是,永不停止学习!

翻译自: https://medium.com/swlh/3-best-books-for-beginner-data-scientists-5c84e62b669c

mysql那本书适合初学者

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

语音对话系统的设计要点与多轮对话的重要性

这是阿拉灯神丁Vicky的第 008 篇文章就从最近短视频平台的大妈与机器人快宝的聊天说起吧。某银行内,一位阿姨因等待办理业务的时间太长,与快宝机器人展开了一场来自灵魂的对话。对于银行工作人员的不满,大妈向快宝说道:“你们的工…

c读取txt文件内容并建立一个链表_C++链表实现学生信息管理系统

可以增删查改&#xff0c;使用链表存储&#xff0c;支持排序以及文件存储及数据读取&#xff0c;基本可以应付期末大作业&#xff08;狗头&#xff09; 界面为源代码为一个main.cpp和三个头文件&#xff0c;具体为 main.cpp#include <iostream> #include <fstream>…

阎焱多少身价_2020年,数据科学家的身价是多少?

阎焱多少身价Photo by Christine Roy on Unsplash克里斯汀罗伊 ( Christine Roy) 摄于Unsplash Although we find ourselves in unprecedented times of uncertainty, current events have shown just how valuable the fields of Data Science and Computer Science truly are…

单据打印_Excel多功能进销存套表,自动库存单据,查询打印一键操作

Hello大家好&#xff0c;我是帮帮。今天跟大家分享一张Excel多功能进销存管理套表&#xff0c;自动库存&#xff0c;单据打印&#xff0c;查询统算一键操作。为了让大家能更稳定的下载模板&#xff0c;我们又开通了全新下载方式(见文章末尾)&#xff0c;以便大家可以轻松获得免…

卡尔曼滤波滤波方程_了解卡尔曼滤波器及其方程

卡尔曼滤波滤波方程Before getting into what a Kalman filter is or what it does, let’s first do an exercise. Open the google maps application on your phone and check your device’s current location.在了解什么是卡尔曼滤波器或其功能之前&#xff0c;我们先做一个…

Candidate sampling:NCE loss和negative sample

在工作中用到了类似于negative sample的方法&#xff0c;才发现我其实并不了解candidate sampling。于是看了一些相关资料&#xff0c;在此简单总结一些相关内容。 主要内容来自tensorflow的candidate_sampling和卡耐基梅隆大学一个学生写的一份notesNotes on Noise Contrastiv…

golang key map 所有_Map的底层实现 为什么遍历Map总是乱序的

Golang中Map的底层结构其实提到Map&#xff0c;一般想到的底层实现就是哈希表&#xff0c;哈希表的结构主要是Hashcode 数组。存储kv时&#xff0c;首先将k通过hashcode后对数组长度取余&#xff0c;决定需要放入的数组的index当数组对应的index已有元素时&#xff0c;此时产生…

朴素贝叶斯分类器 文本分类_构建灾难响应的文本分类器

朴素贝叶斯分类器 文本分类背景 (Background) Following a disaster, typically you will get millions and millions of communications, either direct or via social media, right at the time when disaster response organizations have the least capacity to filter and…

第二轮冲次会议第六次

今天早上八点我们进行了站立会议 此次站立会议我们开了30分钟 参加会议的人员&#xff1a; 黄睿麒 侯熙磊 会议内容&#xff1a;我们今天讨论了如何分离界面&#xff0c;是在显示上进行限制从而达到不同引用展现不同便签信息&#xff0c;还是单独开一个界面从而实现显示不同界面…

markdown 链接跳转到标题_我是如何使用 Vim 高效率写 Markdown 的

本文仅适合于对vim有一定了解的人阅读&#xff0c;没有了解的人可以看看文中的视频我使用 neovim 代替 vim &#xff0c;有些插件是 neovim 独占&#xff0c; neovim 和 vim 的区别请自行 google系统: Manjaro(Linux)前言之前我一直使用的是 vscode 和 typora 作为 markdown 编…

Seaborn:Python

Seaborn is a data visualization library built on top of matplotlib and closely integrated with pandas data structures in Python. Visualization is the central part of Seaborn which helps in exploration and understanding of data.Seaborn是建立在matplotlib之上…

福大软工 · 第十次作业 - 项目测评(团队)

写在前面 本次作业测试报告链接林燊大哥第一部分 调研&#xff0c;评测 一、评测 软件的bug&#xff0c;功能评测&#xff0c;黑箱测试 1.下载并使用&#xff0c;描述最简单直观的个人第一次上手体验 IOS端 UI界面简单明了&#xff0c;是我喜欢的极简风格。课程模块界面简洁优雅…

销货清单数据_2020年8月数据科学阅读清单

销货清单数据Note: I am not affiliated with any of the writers in this article. These are simply books and essays that I’m excited to share with you. There are no referrals or a cent going in my pocket from the authors or publishers mentioned. Reading is a…

c++运行不出结果_fastjson 不出网利用总结

点击蓝字 关注我们 声明 本文作者:flashine 本文字数:2382 阅读时长:20分钟 附件/链接:点击查看原文下载 声明:请勿用作违法用途,否则后果自负 本文属于WgpSec原创奖励计划,未经许可禁止转载 前言 之前做项目在内网测到了一个fastjson反序列化漏洞,使用dnslo…

FocusBI:租房分析可视化(PowerBI网址体验)

微信公众号&#xff1a;FocusBI关注可了解更多的商业智能、数据仓库、数据库开发、爬虫知识及沪深股市数据推送。问题或建议&#xff0c;请关注公众号发送消息留言;如果你觉得FocusBI对你有帮助&#xff0c;欢迎转发朋友圈或在文章末尾点赞[1] 《商业智能教程》pdf下载地址 …

米其林餐厅 盐之花_在世界范围内探索《米其林指南》

米其林餐厅 盐之花Among the culinary world, there are few greater accolades for a restaurant than being awarded a Michelin star (or three!), or being listed as one of the best in the world by a reputable guide. Foodies and fine dine lovers like myself, see …

差值平方和匹配_纯前端实现图片的模板匹配

基础介绍模板匹配是指在当前图像A里寻找与图像B最相似的部分&#xff0c;本文中将图像A称为模板图像&#xff0c;将图像B称为搜索匹配图像。引言&#xff1a;一般在Opencv里实现此种功能非常方便&#xff1a;直接调用result cv2.matchTemplate(templ, search, method)templ 为…

蓝牙耳机音量大解决办法_长时间使用蓝牙耳机的危害这么大?我们到底该选什么蓝牙耳机呢?...

蓝牙耳机避免了耳机线缠结&#xff0c;使人活动更自由&#xff0c;给人们带来了更加方便、舒适的听觉体验。但近日&#xff0c;英国《每日邮报》刊文表示&#xff0c;蓝牙耳机可能会危害人体健康。美国加州大学伯克利分校公共健康教授乔尔莫斯科维茨博士表示&#xff0c;已有研…

spotify 数据分析_我的Spotify流历史分析

spotify 数据分析Spotisis /spo-ti-sis/ noun The analysis of one’s Spotify streaming history using Python.Spotisis / spo-ti-sis / 名词使用Python分析一个人的Spotify流历史。 I was reading through a lot of data science related guides and project ideas when I …

intellig idea中jsp或html数据没有自动保存和更换字体

主题一:保存数据jsp intellig idea是自动保存数据的,看到没有保存 解决方案&#xff1a; 成功解决 主题二:更换字体: 或者快捷键CtelAlts 成功解决 转载于:https://www.cnblogs.com/weibanggang/p/9398498.html