itchat 道歉_人类的“道歉”

itchat 道歉

When cookies were the progeny of “magic cookies”, they were seemingly innocuous packets of e-commerce data that stored a user’s partial transaction state on their computer. It wasn’t disclosed that you were playing a beneficial part in a much larger system, and you didn’t have a choice on accepting your role.

当cookie是“魔术cookie”的后代时,它们似乎是无害的电子商务数据包,它们在计算机上存储了用户的部分交易状态。 没有透露您在更大的系统中扮演着有益的角色,并且您没有选择接受角色的选择。

Imagine a stranger slipping a packet into your pocket. And then that stranger regularly slips their hand back into your pocket to check on it, because unbeknownst to you that packet has the power to gather and store all sorts of information about you. For over two whole years, some (ingenious) weirdos were doing this virtually unnoticed until the Financial Times reported on the phenomena in 1997. Unnerving? Sure. Yummy? Nope.

想象一个陌生人将一小包滑入你的口袋。 然后那个陌生人经常把手伸回你的口袋里检查它,因为你不知道那个小包有能力收集和存储关于你的各种信息。 在过去的两年中,直到1997年英国《 金融时报》报道这种现象之前,一些(怪异的)怪异者几乎没有注意到这一点。 当然。 好吃? 不。

Today those weirdos are a lot more obvious: I bump into them at least 10 times a day. What was supposed to transform the internet into a safer, more privacy-preserving place — making this activity conspicuous and consensual via cookie consent banners — is just exposing what an unpleasant place the internet can be.

今天,这些怪异现象变得更加明显:我每天至少碰到10次。 旨在将互联网转变为更安全,更具隐私保护的场所的目的(通过Cookie同意横幅使该活动引人注目并达成共识 )只是在揭露互联网可能令人不快的地方。

Abzu.ai上没有cookie同意横幅 (There are no cookie consent banners on Abzu.ai)

There are no cookie consent banners on Abzu.ai because we only use strictly necessary cookies and session cookies. Check out our privacy policy — it’s pretty straightforward.

Abzu.ai上没有cookie同意横幅,因为我们仅使用严格必要的cookie和会话cookie。 查看我们的隐私政策 -这非常简单。

Our cookie policy is simple: Start with a question, not with data.

我们的Cookie政策很简单: 从问题开始,而不是数据。

Data is universally available. What is scarce is the foresight to synthesize information from your data. You’re constantly being mined and monitored in innumerous domains for innumerable ilk of data, because starting with data is unscientifically easy. Asking the question first, building a model to test the hypothesis: now that’s the hard part.

数据是普遍可用的。 缺乏 数据中 综合信息远见卓识 。 您会在无数域中不断挖掘和监视大量数据,因为从数据开始非常简单。 首先提出问题,建立一个模型来检验假设:现在这是最困难的部分。

Image for post
When data drives operations and decisions.
当数据驱动运营和决策时。

In a vacuum of critical thinking by controllers — and until recently a vacuum of enforced policies — the equation reversed. The direction of computation should have been: “What data do we need to answer our question?” But in an abundance of raw material (your personal data), controllers floated along a lazy river fed by tributaries of data-collection and allowed the flow of data to define what to do next. Data drove operations and decisions. When controllers let data tell them what to do next, data simply said it wanted more data.

在管制员批判性思维的真空中-直到最近,在强制执行政策的真空中 -方程逆转了。 计算的方向应该是:“我们需要什么数据来回答我们的问题?” 但是,在大量的原材料(您的个人数据)中,控制器沿着一条由数据收集支流支配的懒惰河漂浮着,并允许数据流定义下一步要做什么。 数据推动运营和决策。 当控制器让数据告诉他们下一步该怎么做时,数据只是说它想要更多的数据。

Image for post
“You wanna talk about stress? You wanna talk about stress?! Okay! I’ve stumbled onto a major company conspiracy, Mac , how ‘bout that for stress?” — Charlie
“你想谈论压力吗? 您想谈论压力吗? 好的! 我偶然发现了一个主要的公司阴谋,Mac,这是如何“减轻压力?” 查理

But controllers forgot to consider that data doesn’t imply correlation. It’s easy to assume or overestimate a link between variables. Continue adding personal information to the equation, and now it’s conclusion-by-conspiracy-wall because dependencies and critical thinking didn’t originate the function. If it sounds like you’re talking crazy or jumping to conclusions, you probably just need more data.

但是控制器忘记考虑到数据并不意味着相关 。 很容易假设或高估变量之间的联系。 继续将个人信息添加到等式中,现在这是按阴谋论得出的结论,因为依存关系和批判性思维并非源自此功能。 如果听起来您是在疯狂地谈论话题或正在得出结论,那么您可能只需要更多数据。

I’ve been that controller: the marketing professional who rejected Occam’s razor and thoughtful planning. Instead I embraced unnecessary complexity and an overabundance of data simply because I could, and because users let me. Friendly interfaces and, frankly, conveniences in consumption journeys obscured the computational misdirection (data first, questions later) and the magnitude of what was going on.

我一直是那个控制者:拒绝Occam的剃须刀和周到的计划的营销专家。 相反,我之所以接受不必要的复杂性和数据过多是因为我可以,并且因为用户允许我。 友好的界面以及坦率的说,在消费旅程中的便利性掩盖了计算的误导(首先是数据,随后是问题)以及正在发生的事情。

Granted, some really interesting interrelated behaviors surfaced because we are mostly predictable beings for all our impulsive and irrational behavior. But without a hypothesis to solve, or any forethought, there is no promise that you’ll generalize correctly. And there are consequences to allowing companies such intimacy and accessibility into so many aspects of our lives — consequences to playing god with big systems.

当然,出现了一些非常有趣的相互关联的行为,因为我们对于所有冲动和非理性行为都是可以预见的。 但是,如果没有要解决的假设或任何预先考虑,就无法保证会正确地进行概括。 允许公司如此亲密和可访问性进入我们生活的许多方面会产生后果,这是在大型系统中扮演上帝的后果 。

以人为本的技术意味着放弃上帝模式 (Human-centric technology means giving up God mode)

We’ve been creating new tools but for the same old urges. We’re still trying to play god, to take and hoard and monitor more than we should before we have divined a direction. Is anyone surprised that our inventions reflect our biases, avarice, and prejudices?

我们一直在创建新工具,但出于相同的旧追求。 我们仍然在尝试神,要占卜和监视比我们确定方向之前更多的事情。 有人会对我们的发明反映出我们的偏见 , 贪婪和偏见感到惊讶吗?

Image for post
“Likely crash and kill us all.” — Wash
“很可能崩溃并杀死我们所有人。” - 洗

When we talk about making humane tech or human-centered AI, what we really mean is giving up God mode. We mean making decisions thoughtfully and responsibly.

当我们谈论制造以人为本的技术或以人为本的AI时,我们真正的意思是放弃上帝模式。 我们的意思是周到负责的决策 。

Metering our activities doesn’t mean we throttle possibilities or become narrow-minded! It means that we become more of our best selves: communal rather than individual, explorers over conquerors, hunters instead of gatherers, creative in lieu of one-track-minded.

对我们的活动进行计量并不意味着我们会扼制可能性或变得狭narrow! 这意味着我们更多地成为了自己 :集体而非个人,征服者的探索者,猎人而不是收集者,富有创造力,而不是一心一意。

Image for post

At Abzu, we’re for lean data and human-centric technology. We’re for self-organization. We’re not for control by external agents, which is why we’ll never ask for anything we don’t need.

在Abzu,我们追求精益数据和以人为本的技术。 我们是为了自我组织。 我们不希望由外部代理控制,这就是为什么我们永远不会索要不需要的东西的原因。

We start with questions, and we answer through data, not by ineffectively digging through limitless data sets.

我们从问题开始,然后通过数据回答,而不是无效地挖掘无限的数据集。

We listen to our users to get a sense of their needs. We conduct personalized interviews. We hand-hold, we white-glove, and we hug because we embrace our humanity. And we firmly believe we aren’t the crazy ones.

我们倾听用户的声音,以了解他们的需求。 我们进行个性化采访。 我们握住,白色手套,拥抱,因为我们拥抱人类。 我们坚信我们不是疯子。

翻译自: https://medium.com/abzuai/apologies-for-our-humanity-c957ff721a59

itchat 道歉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/388896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab软件imag函数_「复变函数与积分变换」基本计算代码

使用了Matlab代码,化简平时遇到的计算问题,也可以用于验算结果来自211工科专业2学分复变函数与积分变换课程求复角主值sym(angle(待求复数))%公式 sym(angle(1sqrt(3)*i))%举例代入化简将 代入关于z的函数f(z)中并化解,用于公式法计算无穷远点…

数据科学 python_为什么需要以数据科学家的身份学习Python的7大理由

数据科学 pythonAs a new Data Scientist, you know that your path begins with programming languages you need to learn. Among all languages that you can select from Python is the most popular language for all Data Scientists. In this article, I will cover 7 r…

rabbitmq 不同的消费者消费同一个队列_RabbitMQ 消费端限流、TTL、死信队列

消费端限流1. 为什么要对消费端限流假设一个场景,首先,我们 Rabbitmq 服务器积压了有上万条未处理的消息,我们随便打开一个消费者客户端,会出现这样情况: 巨量的消息瞬间全部推送过来,但是我们单个客户端无法同时处理这…

动量策略 python_在Python中使用动量通道进行交易

动量策略 pythonMost traders use Bollinger Bands. However, price is not normally distributed. That’s why only 42% of prices will close within one standard deviation. Please go ahead and read this article. However, I have some good news.大多数交易者使用布林…

css3 变换、过渡效果、动画

1 CSS3 选择器 1.1 基本选择器 1.2 层级 空格 > .itemli ~ .item~p 1.3 属性选择器 [attr] [attrvalue] [attr^value] [attr$value] [attr*value] [][][] 1.4 伪类选择器 :link :visited :hover :active :focus :first-child .list li:first-child :last-chi…

mysql常用的存储引擎_Mysql存储引擎

什么是存储引擎?关系数据库表是用于存储和组织信息的数据结构,可以将表理解为由行和列组成的表格,类似于Excel的电子表格的形式。有的表简单,有的表复杂,有的表根本不用来存储任何长期的数据,有的表读取时非…

android studio设计模式和文本模式切换

转载于:https://www.cnblogs.com/judes/p/9437104.html

高斯模糊为什么叫高斯滤波_为什么高斯是所有发行之王?

高斯模糊为什么叫高斯滤波高斯分布及其主要特征: (Gaussian Distribution and its key characteristics:) Gaussian distribution is a continuous probability distribution with symmetrical sides around its center. 高斯分布是连续概率分布,其中心周…

C# webbrowser 代理

百度,google加自己理解后,将所得方法总结一下: 方法1:修改注册表Software//Microsoft//Windows//CurrentVersion//Internet Settings下 ProxyEnable和ProxyServer。这种方法适用于局域网用户,拨号用户无效。 1p…

C MySQL读写分离连接串_Mysql读写分离

一 什么是读写分离MySQL Proxy最强大的一项功能是实现“读写分离(Read/Write Splitting)”。基本的原理是让主数据库处理事务性查询,而从数据库处理SELECT查询。数据库复制被用来把事务性查询导致的变更同步到集群中的从数据库。当然,主服务器也可以提供…

从Jupyter Notebook到脚本

16 Aug: My second article: From Scripts To Prediction API8月16日:我的第二篇文章: 从脚本到预测API As advanced beginners, we know quite a lot: EDA, ML concepts, model architectures etc…… We can write a big Jupyter Notebook, click “Re…

加勒比海兔_加勒比海海洋物种趋势

加勒比海兔Ok, here’s a million dollar question: is the Caribbean really dying? Or, more specifically, are marine species found on Caribbean reefs becoming less abundant?好吧,这是一个百万美元的问题:加勒比海真的死了吗? 或者…

tornado 简易教程

引言 回想Django的部署方式 以Django为代表的python web应用部署时采用wsgi协议与服务器对接(被服务器托管),而这类服务器通常都是基于多线程的,也就是说每一个网络请求服务器都会有一个对应的线程来用web应用(如Djang…

人口密度可视化_使用GeoPandas可视化菲律宾的人口密度

人口密度可视化GeoVisualization /菲律宾。 (GeoVisualization /Philippines.) Population density is a crucial concept in urban planning. Theories on how it affects economic growth are divided. Some claim, as Rappaport does, that an economy is a form of “spati…

Unity - Humanoid设置Bip骨骼导入报错

报错如下: 解决: 原因是biped骨骼必须按照Unity humanoid的要求设置,在max中设置如下: 转载于:https://www.cnblogs.com/CloudLiu/p/10746052.html

Kubernetes - - k8s - v1.12.3 OpenLDAP统一认证

1,基本概念 为了方便管理和集成jenkins,k8s、harbor、jenkins均使用openLDAP统一认证。2,部署openLDAP 根据之前的文档,openLDAP使用GFS进行数据持久化。下载对应的openLDAP文件git clone https://github.com/xiaoqshuo/k8s-clust…

srpg 胜利条件设定_英雄联盟获胜条件

srpg 胜利条件设定介绍 (Introduction) The e-sports community has been growing rapidly in the past few years, and what used to be a casual pastime has morphed into an industry projected to generate $1.8 B in revenue by 2022. While there are many video games …

机器学习 综合评价_PyCaret:机器学习综合

机器学习 综合评价Any Machine Learning project journey starts with loading the dataset and ends (continues ?!) with the finalization of the optimum model or ensemble of models for predictions on unseen data and production deployment.任何机器学习项目的旅程都…

silverlight 3D 游戏开发

http://www.postvision.net/SilverMotion/DemoTech.aspx silverlight 3D 游戏开发 时间:2010-10-22 06:33来源:开心银光 作者:黎东海 点击: 562次意外发现一个silverlight的实时3D渲染引擎。性能比开源那些强很多。 而且支持直接加载maya,3Dmax等主流3D模型文件。 附件附上它的…

皮尔逊相关系数 相似系数_皮尔逊相关系数

皮尔逊相关系数 相似系数数据科学和机器学习统计 (STATISTICS FOR DATA SCIENCE AND MACHINE LEARNING) In the last post, we analyzed the relationship between categorical variables and categorical and continuous variables. In this case, we will analyze the relati…