uber 数据可视化_使用R探索您在Uber上的活动:如何分析和可视化您的个人数据历史记录

uber 数据可视化

Perhaps, dear reader, you are too young to remember that before, the only way to request a particular transport service such as a taxi was to raise a hand to make a signal to an available driver, who upon seeing you would stop if he was not busy to transport you to your destination, not without first asking how far you go, to assess whether or not to take the task. And without stars with which to let the driver know your satisfaction as a passenger with the trip.

亲爱的读者,也许您还太年轻,以至于您以前还不记得要求出租车之类的特殊运输服务的唯一方法是举手向可用的驾驶员发出信号,如果您看到他,他会停下来。不忙于将您运送到目的地,而不是首先询问您要走多远,以评估是否要执行任务。 而且没有星星,可以让驾驶员知道您对这次旅行的满意程度。

Just seven years ago, at least in Mexico before Uber’s arrival, that’s how things were. The arrival of the most famous Mobility-as-a-service App in the world changed many of our habits, opening the market, and great opportunities for many.

就在七年前,至少在Uber到达墨西哥之前,情况就是这样。 世界上最著名的移动即服务应用程序的到来改变了我们的许多习惯,打开了市场,并为许多人带来了巨大的机会。

Rarely do we stop for a moment to analyze our consumption habits and answer questions such as How much have I spent? What places do I go to on Uber are the most frequent? With the distance traveled until today, could I have reached China? Uber, like many other applications, offers you the possibility of requesting a copy of your data, which includes the complete history of your trips. We will take advantage of this to analyze and visualize some interesting personal data.

我们很少停下来分析一下我们的消费习惯并回答一些问题,例如我花了多少钱? 我在Uber上最常去哪些地方? 到今天为止,我能到达中国吗? 与许多其他应用程序一样,Uber为您提供了请求数据副本的可能性,其中包括行程的完整历史记录。 我们将利用此优势来分析和可视化一些有趣的个人数据。

从哪里获得我的数据的副本? (Where to get a copy of my data?)

You can request your copy from this URL which is the section of the official Uber help center and that talks about it: https://help.uber.com/riders/article/request-a-copy-of-your-uber-data?nodeId=2c86900d-8408–4bac-b92a-956d793acd11. At the bottom of that page, you have to click on the link that says “Download your data”

您可以从该URL(这是Uber官方帮助中心的一部分)中获取有关副本的信息,该URL涉及该内容: https : //help.uber.com/riders/article/request-a-copy-of-your-uber- data?nodeId = 2c86900d-8408–4bac-b92a-956d793acd11 。 在该页面底部,您必须点击显示“下载数据”的链接

Image for post
Screenshot: Uber Help Center Portal
屏幕截图:Uber帮助中心门户

Clicking will redirect you to a new window to log in with your account. Also, Uber to make sure that you are requesting the data will send you an SMS to the phone number associated with your account, with a 4-digit code that you must enter to authenticate yourself. Once successfully authenticated you will now find a new button with the title “Request data” to which you must click.

单击会将您重定向到新窗口,以使用您的帐户登录。 此外,Uber要确保您正在请求数据,将向您的帐户关联的电话号码发送一条SMS,其中包含您必须输入的4位数字以进行身份​​验证。 成功通过身份验证后,您现在将找到一个标题为“请求数据”的新按钮,您必须单击该按钮。

Image for post
Image for post
Screenshots: Verification code received in SMS and access to request a copy of personal data on Uber
屏幕截图:在SMS中收到验证码,并可以访问以请求在Uber上复制个人数据

By clicking, Uber will be sending you an email notifying you that a copy of your data is being prepared and will be sent to you as requested. Approximately 12 to 24 hours later, a new email should be arriving inviting you to log in again to download your copy, in .zip format.

通过单击,Uber将向您发送一封电子邮件,通知您正在准备数据副本,并将按要求发送给您。 大约12到24小时后,将会收到一封新电子邮件,邀请您再次登录以下载.zip格式的副本。

Image for post
Screenshot: Email with URL to download a copy of personal data on Uber
屏幕截图:带有URL的电子邮件可在Uber上下载个人数据的副本

资料读取 (Data Reading)

By unzipping the .zip file you will find a structure of files and folders. We are interested in the CSV file named “trips_data.csv”, contained in the “Rider” folder. This CSV file contains the data of your trips made since your first trip, until your last trip today. It will provide you with information such as the type of product (UberX VIP, UberX, Uber Eats, etc.), order status (Completed, Canceled, etc.), the fee paid, dates, latitudes and longitudes, distance traveled, among other data.

通过解压缩.zip文件,您将找到文件和文件夹的结构。 我们对“ Rider”文件夹中包含的名为“ trips_data.csv”的CSV文件感兴趣。 该CSV文件包含自您的第一次旅行到今天的最后一次旅行之间的旅行数据。 它将为您提供信息,例如产品类型(UberX VIP,UberX,Uber Eats等),订单状态(已完成,已取消等),所支付的费用,日期,纬度和经度,旅行距离,其他数据。

Image for post
Screenshot: Unzipped .zip file
屏幕截图:.zip文件解压缩

Now, you can create a new script in R to import and read the CSV file and work it to analyze and visualize some interesting data.

现在,您可以在R中创建一个新脚本,以导入和读取CSV文件并对其进行分析和可视化一些有趣的数据。

# REQUIRED LIBRARIES
library(dygraphs)
library(tidyquant)
library(tidyverse)
library(dygraphs)
library(plyr)
library(quantmod)
library(ggthemes)
library(ggplot2)
library(RColorBrewer)
library(sp)
library(ggmap)
library(lubridate)
library(leaflet)
library(plotly)
library(dplyr)
library(mgsub)
library(xts)# DATA READING
myTrips <- read.csv("my_trips_uber_history.csv", stringsAsFactors = FALSE)myTrips$Request.Time <- as.Date(myTrips$Request.Time, "%Y-%m-%d")
myTrips$Year <- as.Date(cut(myTrips$Request.Time, breaks="month"))

各城市旅行时间表 (Trips timeline by City)

You can take a first look at the cities you’ve used Uber in, and explore how much you’ve traveled with Uber over time in each city, given the availability of the “City” variable in the CSV data file.

您可以首先查看使用过Uber的城市,并在CSV数据文件中提供“城市”变量的情况下,探索每个城市随时间推移使用Uber的旅行次数。

# TRIPS TIMELINE BY CITY
timeline <- ggplot(myTrips, aes(Year, City))+
geom_line(color = "#006790", size = 6) +
labs(x= "Year", y= "City") +
ggtitle("Cities where I have requested Uber services", "Full history timeline")
timeline

In my case, I can see that since 2015, when I started using the Uber app, the trips made in Mexico City (where I live) and Toluca (a place where I visit family regularly) stand out, compared to the rest of cities where I haven’t done more than a couple of trips.

以我为例,自2015年以来,当我开始使用Uber应用程序时,与其他城市相比,在墨西哥城(我居住的地方)和托卢卡(我经常拜访家人的地方)进行的旅行脱颖而出在这里我只做了几次旅行。

Image for post
Uber data visualization — Plot of Cities and frequency where Uber was requested
Uber数据可视化—请求Uber的城市和频率图

按城市划分的Uber请求的最终状态 (Final Status of Uber requests by City)

Another variable that we can collect is the final status of the requested order to Uber, identified as “Trip.or.Order.Status”. That is if it was canceled by you, or canceled by the driver, or the fare was divided, or the trip was completed. With which you can see if the number of times that the driver cancels is related to the city of origin, for example.

我们可以收集的另一个变量是向Uber请求的订单的最终状态,标识为“ Trip.or.Order.Status” 。 那是如果您取消了它,或者被驾驶员取消了,或者票价被分割了,或者旅程已经完成了。 例如,通过它您可以查看驾驶员取消的次数是否与原籍城市有关。

# FINAL STATUS OF THE ORDER
orderStatus<-ggplot(myTrips, aes(City,fill = Trip.or.Order.Status)) +
labs(x = "City", y = "Number of requests") +
ggtitle("Final status of Uber service requests", "Order status by city") +
geom_bar() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_brewer(name = "Final status", palette="Set1")
orderStatus

You will get a plot similar to the following. From the outset in my case, I could not be very objective answering the previous question, because as you can see I don’t have at least a comparable quantity of trips per city.

您将获得类似于以下内容的图。 从我的案例开始,我就不能很客观地回答上一个问题,因为如您所见,我每个城市的出行次数至少没有可比性。

Image for post
Uber data visualization — Plot of Cities and Final request status
Uber数据可视化—城市图和最终请求状态

与产品类型相关的Uber请求的最终状态 (The final status of Uber requests related to Product type)

Uber, as you know, is characterized by having different product categories (UberX, VIP, Eats, etc.). You can also see the relationship between the final status of the service with the Product Type you requested. If your history is older than 4 years, you will surely find some inconsistencies in the column “Product.Type” as null, empty, or described as “All”. Or that the category “Pool” or others were named at some point with other variations. You have to regularize and homogenize this type of inconsistency first, before visualizing the data.

如您所知,Uber具有不同的产品类别(UberX,VIP,Eats等)。 您还可以查看服务的最终状态与您请求的产品类型之间的关系。 如果您的历史记录已经超过4年,那么您肯定会在“ Product.Type”列中发现一些不一致的地方,它们为空,空或描述为“全部”。 或者,“ Pool”或其他类别在某些时候以其他变体命名。 在可视化数据之前,您必须首先对这种类型的不一致进行规范化和均质化。

# FINAL STATUS OF THE ORDER CONCERNING THE PRODUCT TYPE
productType =
myTrips %>%
# HOMOGENIZING INCONSISTENCIES IN PRODUCT TYPE NAMES
filter(Product.Type != "All" & Product.Type != "" )productType <- mgsub::mgsub(productType, c("uberX", "UberEATS Marketplace", "Pool"), c("UberX", "UberEATS - Marketplace", "uberPOOL"))
productType <- mgsub::mgsub(productType, c("uberPOOL: MATCHED"), c("uberPOOL"))orderProductType <- qplot(Trip.or.Order.Status, data=productType, geom="bar", fill= Product.Type) +
scale_fill_brewer(name = "Product type", palette="Set1")+
labs(x = "Final order status", y = "Number of requests") +
ggtitle("Final status of Uber service requests", "Order status concerning the Product type") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
orderProductType

In my case, it’s visible that I mostly travel on UberX, so I had more cancellations of my own. And that drivers have canceled more times in Uber Pool than in UberX. Does Uber Green still exist in your cities? In Mexico City, this category spent a short time operating. Having an eco-friendly category was not a bad idea.

就我而言,可见我大部分时间都是在UberX上旅行,所以我有更多的取消订单。 与UberX相比,该司机在Uber Pool中取消的次数更多。 您的城市中仍然存在Uber Green吗? 在墨西哥城,该类别花费​​了很短的时间。 拥有环保类别并不是一个坏主意。

Image for post
Uber data visualization — Plot of requested products and the final status of the request
Uber数据可视化—所请求产品的图和请求的最终状态

请求Uber的地点地图 (Map of locations where Uber was requested)

As I mentioned at the beginning, other variables that our history gives us are the longitudes and latitudes of each trip from where the service was requested. (identified as “Begin.Trip.Lng” and “Begin.Trip.Lat”). We can plot a map with “ggmap” to view locations by city. I will take my trips made in Mexico City, which is where I have a greater record of trips.

正如我在开始时提到的,我们的历史记录给我们的其他变量是请求服务的每次行程的经度和纬度。 (标识为“ Begin.Trip.Lng”“ Begin.Trip.Lat” ))。 我们可以使用“ ggmap”绘制地图,以按城市查看位置。 我将去墨西哥城旅行,那里是我旅行的最好记录。

# MAP OF UBER REQUESTS IN MEXICO CITY
register_google(key = "YOUR_API_KEY")
MexicoCity <- subset(myTrips, City=="Mexico City")
ggmap(get_map(location = "Mexico City", zoom=11, maptype = "roadmap")) +
geom_point(aes(Begin.Trip.Lng, Begin.Trip.Lat), data=MexicoCity, color = I('Red'), size = I(2), zoom=11) +
labs(x = "Longitude", y = "Latitude") +
ggtitle("Locations where Uber was requested", "Mexico City")

It’s important to register a Maps API Key as a string and replace the text “YOUR_API_KEY” in the code snippet, otherwise, you will encounter an error message like the following, which will not allow you to view the map:

将Maps API密钥注册为字符串并替换代码段中的文本“ YOUR_API_KEY”非常重要,否则,您将遇到类似以下的错误消息,该错误消息将不允许您查看地图:

Image for post
Screenshot: Console error due to lack of Maps API Key
屏幕截图:由于缺少Maps API密钥而导致控制台错误

It’s very simple, you can obtain a Maps API Key by following the instructions that you will find in the official documentation: https://developers.google.com/maps/documentation/javascript/get-api-key

非常简单,您可以按照官方文档中的说明获取Maps API密钥: https : //developers.google.com/maps/documentation/javascript/get-api-key

Once you have added your Maps API Key and executed the code, you will then get a map like the following. In my case, it’s notable that I do not move much in the north of Mexico City.

添加了Maps API密钥并执行了代码后,您将获得类似以下的地图。 就我而言,值得注意的是,我在墨西哥城北部的移动不多。

Image for post
Uber data visualization — Request location map
Uber数据可视化—请求位置图

请求Uber的位置的密度图 (Density map of locations from where Uber was requested)

Complementing the previously created map, we can also create a density map with “qmplot”.

作为对先前创建的贴图的补充,我们还可以使用“ qmplot”创建一个密度贴图。

# DENSITY MAP OF UBER REQUESTS IN MEXICO CITY
qmplot(Begin.Trip.Lng, Begin.Trip.Lat, data = MexicoCity, geom = "blank",
zoom = 11, extent = "panel", maptype = "toner-background", darken = .7, legend = "right") +
stat_density_2d(aes(fill = ..level..), geom = "polygon", alpha = .3, color = NA) +
scale_fill_gradient2("Level", low = "white", mid = "yellow", high = "red", midpoint = 100) +
labs(x = "Longitude", y = "Latitude") +
ggtitle("Locations where Uber was requested", "Mexico City Density Map")

You will get the following plot. For example, in my case, it reflects a trend regarding the location of the place where I live and the office where I work.

您将获得以下图解。 例如,就我而言,它反映了我所居住的地方和我的办公室位置的趋势。

Image for post
Uber data visualization — Request location Density map
Uber数据可视化—请求位置密度图

您使用Uber花了多少钱? (How much money have you spent using Uber?)

Perhaps this is another of the questions that you are asking yourself at the moment. You will find that you have the variable “Fare.Amount” with the rate paid for each service, in your local currency (in my case, in Mexican Pesos). You’ll also find the variable “Dropoff.Time” that indicates the exact timestamp the service ended at. We can visualize with a scatter graph how much of your valuable money you have paid Uber to bring you to and from your destinations.

也许这是您目前正在问自己的另一个问题。 您会发现,您有一个变量“ Fare.Amount”,其中包含为每种服务支付的费率,以您当地的货币(在我的情况下是墨西哥比索)。 您还将找到变量“ Dropoff.Time” ,该变量指示服务结束的确切时间戳。 我们可以通过散点图直观地显示您已经付给Uber多少钱来带您往返目的地。

# HOW MUCH I PAID TO UBER FROM 2015 TO 2020
totalPaid <- ggplot(myTrips, aes(x=Dropoff.Time, y=Fare.Amount, Fare.Currency = Fare.Currency)) +
geom_point(aes(col=Fare.Amount, size=Fare.Amount)) +
labs(col="Amount", size="size")+
labs(x = "Timestamp", y = "Fare amount") +
ggtitle("¿How much have I paid for Uber services?", "From 2015 to 2020")+
guides(size=FALSE)
totalPaid

Then you will get a plot like the following, wherein my case I can see that the maximum I have paid for a service is around $ 250 pesos, and the minimum is the large amount of $ 0 pesos, ha! (of course, the first time is free).

然后,您将得到如下图所示的情节,在我的案例中,我可以看到我为一项服务支付的最高金额约为250比索,而最低金额为0美元比索,哈哈! (当然,第一次是免费的)。

Image for post
Uber data visualization — Plot of fees paid for requested service
Uber数据可视化—为所请求的服务支付的费用图

2020年您在Uber上花了多少钱? (How much money have you spent on Uber this 2020?)

This 2020 gave us a good punch with the arrival of the COVID-19, modifying our consumption habits of many things, and Uber is no exception. With the possibility of doing home office, you may see it reflected if, as in my case, and without a car, you avoided going out during the lockdown as much as possible. You can use a bar graph, to see in detail how much you have spent per day, so far this year.

2020年是COVID-19到来的一年,这改变了我们很多事情的消费习惯,Uber也不例外。 有可能进行家庭办公,就像我的情况一样,如果没有汽车,您会尽可能地避免出门,这就像我的情况一样。 您可以使用条形图详细了解今年到目前为止每天的花费。

# HOW MUCH I SPENT ON UBER IN 2020
myTrips2020 <- myTrips %>%
filter(Request.Time >= as.Date("2020-01-01") & Request.Time <= as.Date("2020-07-13"))min(myTrips2020$Request.Time)
max(myTrips2020$Request.Time)paid2020 <- ggplot(myTrips2020, aes(Request.Time, Fare.Amount))+
geom_bar(stat = 'identity', fill = 'darkorange2', width=1) +
labs(x = "Date", y = "Total spent per day") +
ggtitle("How much have I spent on Uber in 2020?", "From January to July")
paid2020

This year it’s visible that mainly in April when the health emergency was determined in the country where I live, I stopped using Uber mostly. You will get a plot like the following.

今年可见,主要是在4月,在我所居住的国家确定了医疗紧急情况后,我大部分时间停止使用Uber。 您将得到如下图。

Image for post
Uber data visualization — Plot of the total spent per day in 2020
Uber数据可视化-2020年每天总支出的图表

可视化您的行进距离 (Visualizing your traveled distances)

Finally, you can also view your distances traveled per trip. You will find for this the variable “Distance..miles”, which is responsible for recording the distance of the trip based on the local measurement system, that is, in my case, for example, where we operate with the decimal metric system, the distances are recorded in kilometers (km.). You can create a “dygraph” to look at the details.

最后,您还可以查看每次旅行的距离。 您会为此找到变量“ Distance..miles” ,该变量负责记录基于本地测量系统的行程距离,例如,在我的情况下,例如,我们使用十进制度量系统,距离以公里(公里)记录。 您可以创建一个“图表”以查看详细信息。

# TRAVELED DISTANCE
distanceRides <- read.csv("my_trips_uber_history.csv")
distanceRides$Request.Time <- ymd_hms(distanceRides$Request.Time)
distanceRides$Dropoff.Time <- ymd_hms(distanceRides$Dropoff.Time)
rides = xts(x=distanceRides$Distance..miles., order.by = distanceRides$Request.Time)dygraph(rides, main = "Distances traveled from 2015 to 2020") %>%
dyOptions(drawPoints = TRUE, pointSize = 5, colors="#1a954d") %>%
dyRangeSelector() %>%
dyAxis("y", label= "Distance (km.)") %>%
dyHighlight(highlightCircleSize = 0.5,
highlightSeriesBackgroundAlpha = 1)

You will get an interactive plot like the following, wherein my case, I can see that the maximum distance in a single trip has been 21 km.

您将获得如下所示的交互式图表,在我的案例中,我可以看到单程最大距离为21 km。

Image for post
Uber data visualization — Plot of distances traveled
Uber数据可视化-行驶距离图

Thanks for your kind reading. In the same way, as with all my articles, I share the plots generated with “plotly” in a “flexdashboard” that I put together: https://rpubs.com/cosmoduende/uber-trips-analyisis

感谢您的阅读。 以同样的方式,就像我所有的文章一样,我在“ flexdashboard”中共享由“ plotly”生成的图: https : //rpubs.com/cosmoduende/uber-trips-analyisis

And here you can also find the complete code: https://github.com/cosmoduende/r-uber-trips-analyisis

在这里您还可以找到完整的代码: https : //github.com/cosmoduende/r-uber-trips-analyisis

I thank you for having come this far, I wish you have a happy analysis, that you can put it into practice, and be as surprised and amused as I am with the results!

感谢您所做的一切,祝您分析愉快,您可以将它付诸实践,并对结果感到惊讶和高兴!

翻译自: https://medium.com/swlh/explore-your-activity-on-uber-with-r-how-to-analyze-and-visualize-your-personal-data-history-f3f04fc9338c

uber 数据可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/388527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java B2B2C springmvc mybatis电子商城系统(四)Ribbon

2019独角兽企业重金招聘Python工程师标准>>> 一&#xff1a;Ribbon是什么&#xff1f; Ribbon是Netflix发布的开源项目&#xff0c;主要功能是提供客户端的软件负载均衡算法&#xff0c;将Netflix的中间层服务连接在一起。Ribbon客户端组件提供一系列完善的配置项如…

基于plotly数据可视化_[Plotly + Datashader]可视化大型地理空间数据集

基于plotly数据可视化简介(我们将创建的内容)&#xff1a; (Introduction (what we’ll create):) Unlike the previous tutorials in this map-based visualization series, we will be dealing with a very large dataset in this tutorial (about 2GB of lat, lon coordinat…

Centos用户和用户组管理

inux系统是一个多用户多任务的分时操作系统&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须首先向系统管理员申请一个账号&#xff0c;然后以这个账号的身份进入系统。1、添加新的用户账号使用useradd命令&#xff0c;其语法如下&#xff1a;useradd 选项 用户名-…

划痕实验 迁移面积自动统计_从Jupyter迁移到合作实验室

划痕实验 迁移面积自动统计If you want to use Google Colaboratory to perform your data analysis, for building data pipelines and data visualizations, here is the beginners’ guide to migrate from one tool to the other.如果您想使用Google Colaboratory进行数据分…

数据开放 数据集_除开放式清洗之外:叙述是开放数据门户的未来吗?

数据开放 数据集There is growing consensus in the open data community that the mere release of open data — that is data that can be freely accessed, remixed, and redistributed — is not enough to realize the full potential of openness. Successful open data…

ios android 交互 区别,很多人不承认:iOS的返回交互,对比Android就是反人类。

宁之的奥义2020-09-21 10:54:39点灭只看此人举报给你解答&#xff1a;美国人都是左撇子&#xff0c;所以他们很方便&#x1f436;给你解答&#xff1a;美国人都是左撇子&#xff0c;所以他们很方便&#x1f436;亮了(504)回复查看评论(19)回忆的褶皱楼主2020-09-21 11:01:01点灭…

Servlet+JSP

需要说明的是&#xff0c;其实工具的版本不是主要因素&#xff0c;所以我下面忽略版本。 你能搜到这篇文章&#xff0c;说明你已经知道怎么部署Tomcat&#xff0c;并运行自己的网页了。 但是&#xff0c;我们知道&#xff0c;每次修改源文件&#xff0c;我们总得手工把文件co…

正态分布高斯分布泊松分布_正态分布:将数据转换为高斯分布

正态分布高斯分布泊松分布For detailed implementation in python check my GitHub repository.有关在python中的详细实现&#xff0c;请查看我的GitHub存储库。 介绍 (Introduction) Some machine learning model like linear and logistic regression assumes a Gaussian di…

BABOK - 开篇:业务分析知识体系介绍

本文更新版已挪至 http://www.zhoujingen.cn/itbang/328.html ---------------------------------------------- 当我们作项目时&#xff0c;下面这张图很多人都明白&#xff0c;从计划、构建、测试、部署实施后发现提供的方案并不能真正解决用户的问题&#xff0c;那么我们是…

黑苹果 wifi android,动动手指零负担让你的黑苹果连上Wifi

动动手指零负担让你的黑苹果连上Wifi2019-12-02 10:08:485点赞36收藏4评论购买理由黑苹果Wifi是个头疼的问题&#xff0c;高“贵”的原机Wifi蓝牙很贵&#xff0c;比如我最近偶然得到的BCM94360CS2&#xff0c;估计要180。稍微便宜的一点的&#xff0c;搞各种ID&#xff0c;各种…

float在html语言中的用法,float属性值包括

html中不属于float常用属性值的是float常用的值就三个:left\right\none。没有其他的值了。 其中none这个值是默认的&#xff0c;所以一般不用写。css中float属性有几种用法&#xff1f;值 描述left 元素向左浮动。 right 元素向右浮动。 none 默认值。元素不浮动&#xff0c;并…

它们是什么以及为什么我们不需要它们

Once in a while, when reading papers in the Reinforcement Learning domain, you may stumble across mysterious-sounding phrases such as ‘we deal with a filtered probability space’, ‘the expected value is conditional on a filtration’ or ‘the decision-mak…

LoadRunner8.1破解汉化过程

LR8.1版本已经将7.8和8.0中通用的license封了&#xff0c;因此目前无法使用LR8.1版本&#xff0c;包括该版本的中文补丁。 破解思路&#xff1a;由于软件的加密程序和运行的主程序是分开的&#xff0c;因此可以使用7.8的加密程序覆盖8.1中的加密程序&#xff0c;这样老的7.8和…

TCP/IP网络编程之基于TCP的服务端/客户端(二)

回声客户端问题 上一章TCP/IP网络编程之基于TCP的服务端/客户端&#xff08;一&#xff09;中&#xff0c;我们解释了回声客户端所存在的问题&#xff0c;那么单单是客户端的问题&#xff0c;服务端没有任何问题&#xff1f;是的&#xff0c;服务端没有问题&#xff0c;现在先让…

谈谈iOS获取调用链

本文由云社区发表iOS开发过程中难免会遇到卡顿等性能问题或者死锁之类的问题&#xff0c;此时如果有调用堆栈将对解决问题很有帮助。那么在应用中如何来实时获取函数的调用堆栈呢&#xff1f;本文参考了网上的一些博文&#xff0c;讲述了使用mach thread的方式来获取调用栈的步…

python 移动平均线_Python中的移动平均线

python 移动平均线There are situations, particularly when dealing with real-time data, when a conventional average is of little use because it includes old values which are no longer relevant and merely give a misleading impression of the current situation.…

html5字体的格式转换,font字体

路由器之家网今天精心准备的是《font字体》&#xff0c;下面是详解&#xff01;html中的标签是什么意思HTML提供了文本样式标记&#xff0c;用来控制网页中文本的字体、字号和颜色&#xff0c;多种多样的文字效果可以使网页变得更加绚丽。其基本语法格式&#xff1a;文本内容fa…

红星美凯龙牵手新潮传媒抢夺社区消费市场

瞄准线下流量红利&#xff0c;红星美凯龙牵手新潮传媒抢夺社区消费市场 中新网1月14日电 2019年1月13日&#xff0c;红星美凯龙和新潮传媒战略合作发布会在北京召开&#xff0c;双方宣布建立全面的战略合作伙伴关系。未来&#xff0c;新潮传媒的梯媒产品将入驻红星美凯龙的全国…

机器学习 啤酒数据集_啤酒数据集上的神经网络

机器学习 啤酒数据集Artificial neural networks (ANNs), usually simply called neural networks (NNs), are computing systems vaguely inspired by the biological neural networks that constitute animal brains.人工神经网络(ANN)通常简称为神经网络(NNs)&#xff0c;是…

ER TO SQL语句

ER TO SQL语句的转换&#xff0c;在数据库设计生命周期的位置如下所示。 一、转换的类别 从ER图转化得到关系数据库中的SQL表&#xff0c;一般可分为3类&#xff1a; 1&#xff09;转化得到的SQL表与原始实体包含相同信息内容。该类转化一般适用于&#xff1a; 二元“多对多”关…