{
//1.灰度化,竖向边缘检测
//2.自适应二值化处理
//3.形态学处理(膨胀和腐蚀)
//4.轮廓查找与筛选
Image<Bgr, byte> simage = OriImage; //new Image<Bgr, byte>("license-plate.jpg");
//Image<Bgr, Byte> simage = sizeimage.Resize(400, 300, Emgu.CV.CvEnum.INTER.CV_INTER_NN);
Image<Gray, byte> GrayImg = new Image<Gray, byte>(simage.Width, simage.Height);
IntPtr GrayImg1 = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
//灰度化
CvInvoke.cvCvtColor(simage.Ptr, GrayImg1, Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2GRAY);
//首先创建一张16深度有符号的图像区域
IntPtr Sobel = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_16S, 1);
//X方向的Sobel算子检测
CvInvoke.cvSobel(GrayImg1, Sobel, 2, 0, 3);
IntPtr temp = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
CvInvoke.cvConvertScale(Sobel, temp, 0.00390625, 0);
int it = ComputeThresholdValue(GrayImg.ToBitmap());
二值化处理
Image<Gray, Byte> dest = GrayImg.ThresholdBinary(new Gray(it), new Gray(255));
Image<Gray, byte> dest = new Image<Gray, byte>(simage.Width, simage.Height);
//二值化处理
CvInvoke.cvThreshold(temp, dest, 0, 255, Emgu.CV.CvEnum.THRESH.CV_THRESH_OTSU);
IntPtr temp1 = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
Image<Gray, Byte> dest1 = new Image<Gray, byte>(simage.Width, simage.Height);
CvInvoke.cvCreateStructuringElementEx(3, 1, 1, 0, Emgu.CV.CvEnum.CV_ELEMENT_SHAPE.CV_SHAPE_RECT, temp1);
CvInvoke.cvDilate(dest, dest1, temp1, 6);
CvInvoke.cvErode(dest1, dest1, temp1, 7);
CvInvoke.cvDilate(dest1, dest1, temp1, 1);
CvInvoke.cvCreateStructuringElementEx(1, 3, 0, 1, Emgu.CV.CvEnum.CV_ELEMENT_SHAPE.CV_SHAPE_RECT, temp1);
CvInvoke.cvErode(dest1, dest1, temp1, 2);
CvInvoke.cvDilate(dest1, dest1, temp1, 2);
IntPtr dst = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
CvInvoke.cvZero(dst);
//dest.Dilate(10);
//dest.Erode(5);
using (MemStorage stor = new MemStorage())
{
Contour<Point> contours = dest1.FindContours(
Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_CCOMP,
stor);
for (; contours != null; contours = contours.HNext)
{
Rectangle box = contours.BoundingRectangle;
Image<Bgr, byte> test = simage.CopyBlank();
test.SetValue(255.0);
double whRatio = (double)box.Width / box.Height;
int area = (int)box.Width * box.Height;
if (area > 1000 && area < 10000)
{
if ((3.0 < whRatio && whRatio < 6.0))
{
test.Draw(box, new Bgr(Color.Red), 2);
simage.Draw(box, new Bgr(Color.Red), 2);//CvInvoke.cvNamedWindow("dst");
//CvInvoke.cvShowImage("dst", dst);
imageBox2.Image = simage;
}
}
}
}
}
//1.灰度化,竖向边缘检测
//2.自适应二值化处理
//3.形态学处理(膨胀和腐蚀)
//4.轮廓查找与筛选
Image<Bgr, byte> simage = OriImage; //new Image<Bgr, byte>("license-plate.jpg");
//Image<Bgr, Byte> simage = sizeimage.Resize(400, 300, Emgu.CV.CvEnum.INTER.CV_INTER_NN);
Image<Gray, byte> GrayImg = new Image<Gray, byte>(simage.Width, simage.Height);
IntPtr GrayImg1 = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
//灰度化
CvInvoke.cvCvtColor(simage.Ptr, GrayImg1, Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2GRAY);
//首先创建一张16深度有符号的图像区域
IntPtr Sobel = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_16S, 1);
//X方向的Sobel算子检测
CvInvoke.cvSobel(GrayImg1, Sobel, 2, 0, 3);
IntPtr temp = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
CvInvoke.cvConvertScale(Sobel, temp, 0.00390625, 0);
int it = ComputeThresholdValue(GrayImg.ToBitmap());
二值化处理
Image<Gray, Byte> dest = GrayImg.ThresholdBinary(new Gray(it), new Gray(255));
Image<Gray, byte> dest = new Image<Gray, byte>(simage.Width, simage.Height);
//二值化处理
CvInvoke.cvThreshold(temp, dest, 0, 255, Emgu.CV.CvEnum.THRESH.CV_THRESH_OTSU);
IntPtr temp1 = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
Image<Gray, Byte> dest1 = new Image<Gray, byte>(simage.Width, simage.Height);
CvInvoke.cvCreateStructuringElementEx(3, 1, 1, 0, Emgu.CV.CvEnum.CV_ELEMENT_SHAPE.CV_SHAPE_RECT, temp1);
CvInvoke.cvDilate(dest, dest1, temp1, 6);
CvInvoke.cvErode(dest1, dest1, temp1, 7);
CvInvoke.cvDilate(dest1, dest1, temp1, 1);
CvInvoke.cvCreateStructuringElementEx(1, 3, 0, 1, Emgu.CV.CvEnum.CV_ELEMENT_SHAPE.CV_SHAPE_RECT, temp1);
CvInvoke.cvErode(dest1, dest1, temp1, 2);
CvInvoke.cvDilate(dest1, dest1, temp1, 2);
IntPtr dst = CvInvoke.cvCreateImage(simage.Size, Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
CvInvoke.cvZero(dst);
//dest.Dilate(10);
//dest.Erode(5);
using (MemStorage stor = new MemStorage())
{
Contour<Point> contours = dest1.FindContours(
Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_CCOMP,
stor);
for (; contours != null; contours = contours.HNext)
{
Rectangle box = contours.BoundingRectangle;
Image<Bgr, byte> test = simage.CopyBlank();
test.SetValue(255.0);
double whRatio = (double)box.Width / box.Height;
int area = (int)box.Width * box.Height;
if (area > 1000 && area < 10000)
{
if ((3.0 < whRatio && whRatio < 6.0))
{
test.Draw(box, new Bgr(Color.Red), 2);
simage.Draw(box, new Bgr(Color.Red), 2);//CvInvoke.cvNamedWindow("dst");
//CvInvoke.cvShowImage("dst", dst);
imageBox2.Image = simage;
}
}
}
}
}