OpenCV人脸识别的原理 .

在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下:

[html] view plaincopy
print?在CODE上查看代码片派生到我的代码片
  1. void GetImageRect(IplImage* orgImage, CvRect rectInImage, IplImage* imgRect,double scale)  
  2. {  
  3.     //从图像orgImage中提取一块(rectInImage)子图像imgRect  
  4.     IplImage *result=imgRect;  
  5.     CvRect size;  
  6.     size.x=rectInImage.x*scale;  
  7.     size.y=rectInImage.y*scale;  
  8.     size.width=rectInImage.width*scale;  
  9.     size.height=rectInImage.height*scale;  
  10.       
  11.     //result=cvCreateImage( size, orgImage->depth, orgImage->nChannels );  
  12.     //从图像中提取子图像  
  13.     cvSetImageROI(orgImage,size);  
  14.     cvCopy(orgImage,result);  
  15.     cvResetImageROI(orgImage);  
  16. }  


人脸预处理

现在你已经得到一张人脸,你可以使用那张人脸图片进行人脸识别。然而,假如你尝试这样简单地从一张普通图片直接进行人脸识别的话,你将会至少损失10%的准确率!

在一个人脸识别系统中,应用多种预处理技术对将要识别的图片进行标准化处理是极其重要的。多数人脸识别算法对光照条件十分敏感,所以假如在暗室训练,在明亮的房间就可能不会被识别出来等等。这个问题可归于“lumination dependent”,并且还有其它很多例子,比如脸部也应当在图片的一个十分固定的位置(比如眼睛位置为相同的像素坐标),固定的大小,旋转角度,头发和装饰,表情(笑,怒等),光照方向(向左或向上等),这就是在进行人脸识别前,使用好的图片预处理过滤器十分重要的原因。你还应该做一些其它事情,比如去除脸部周围的多余像素(如用椭圆遮罩,只显示其内部的人脸区域而不是头发或图片背景,因为他们的变化多于脸部区域)。

为简单起见,我展示给你的人脸识别系统是使用灰度图像的特征脸方法。所以我将向你说明怎样简单地把彩色图像转化为灰度图像,并且之后简单地使用直方图均衡化(Histogram Equalization)作为一种自动的标准化脸部图像亮度和对比度的方法。为了得到更好的结果,你可以使用彩色人脸识别(color face recognition,ideally with color histogram fitting in HSV or another color space instead of RGB),或者使用更多的预处理,比如边缘增强(edge enhancement),轮廓检测(contour detection),手势检测(motion detection),等等。
你可以看到一个预处理阶段的例子:

 

这是把一幅RGB格式的图像或灰度图像转变为灰度图像的基本代码。它还把图像调整成了固定的维度,然后应用直方图均衡化来实现固定的亮度和对比度。

PCA原理

现在你已经有了一张经过预处理后的脸部图片,你可以使用特征脸(PCA)进行人脸识别。OpenCV自带了执行PCA操作的”cvEigenDecomposite()”函数,然而你需要一个图片数据库(训练集)告诉机器怎样识别当中的人。

所以你应该收集每个人的一组预处理后的脸部图片用于识别。比如,假如你想要从10人的班级当中识别某个人,你可以为每个人存储20张图片,总共就有200张大小相同(如100×100像素)的经预处理的脸部图片。

特征脸的理论在Servo Magazine的两篇文章(Face Recognition with Eigenface)中解释了,但我仍会在这里尝试着向你解释。

我们使用“主元分析”把你的200张训练图片转换成一个代表这些训练图片主要区别的“特征脸”集。首先它将会通过获取每个像素的平均值,生成这些图片的“平均人脸图片”。然后特征脸将会与“平均人脸”比较。第一个特征脸是最主要的脸部区别,第二个特征脸是第二重要的脸部区别,等……直到你有了大约50张代表大多数训练集图片的区别的特征脸。

  
   
在上面这些示例图片中你可以看到平均人脸和第一个以及最后一个特征脸。注意到,平均人脸显示的是一个普通人的平滑脸部结构,排在最前的一些特征脸显示了一些主要的脸部特征,而最后的特征脸(比如Eigenface 119)主要是图像噪声。你可以在下面看到前32张特征脸。


 
简单地说,特征脸方法(Principal Component Analysis)计算出了训练集中图片的主要区别,并且用这些“区别”的组合来代表每幅训练图片。
比如,一张训练图片可能是如下的组成:

(averageFace) + (13.5% of eigenface0) – (34.3% of eigenface1) + (4.7% of eigenface2) + … + (0.0% of eigenface199).
一旦计算出来,就可以认为这张训练图片是这200个比率(ratio):

{13.5, -34.3, 4.7, …, 0.0}.

用特征脸图片分别乘以这些比率,并加上平均人脸图片 (average face),从这200个比率还原这张训练图片是完全可以做到的。但是既然很多排在后面的特征脸是图像噪声或者不会对图片有太大作用,这个比率表可以被降低到只剩下最主要的,比如前30个,不会对图像质量有很大影响。所以现在可以用30个特征脸,平均人脸图片,和一个含有30个比率的表,来代表全部的200张训练图片。

在另一幅图片中识别一个人,可以应用相同的PCA计算,使用相同的200个特征脸来寻找200个代表输入图片的比率。并且仍然可以只保留前30个比率而忽略其余的比率,因为它们是次要的。然后通过搜索这些比率的表,寻找在数据库中已知的20个人,来看谁的前30个比率与输入图片的前30个比率最接近。这就是寻找与输入图片最相似的训练图片的基本方法,总共提供了200张训练图片。

训练图片

创建一个人脸识别数据库,就是训练一个列出图片文件和每个文件代表的人的文本文件,形成一个facedata.xml“文件。
比如,你可以把这些输入一个名为”trainingphoto.txt”的文本文件:
joke1.jpg
joke2.jpg
joke3.jpg
joke4.jpg
lily1.jpg
lily2.jpg
lily3.jpg
lily4.jpg
它告诉这个程序,第一个人的名字叫“joke,而joke有四张预处理后的脸部图像,第二个人的名字叫”lily”,有她的四张图片。这个程序可以使用”loadFaceImgArray()”函数把这些图片加载到一个图片数组中。

为了从这些加载好的图片中创建一个数据库,你可以使用OpenCV的”cvCalcEigenObjects()”和”cvEigenDecomposite()”函数。

获得特征空间的函数:

[html] view plaincopy
print?在CODE上查看代码片派生到我的代码片
  1. void cvCalcEigenObjects( int nObjects, void* input, void* output, int ioFlags, int ioBufSize, void* userData,CvTermCriteria* calcLimit, IplImage* avg, float* eigVals )  

nObjects:目标的数目,即输入训练图片的数目。
input:输入训练的图片。
output:输出特征脸,总共有nEigens
ioFlags、ioBufSize:默认为0
userData:指向回调函数(callback function)必须数据结构体的指针。
calcLimit:终止迭代计算目标特征的条件。根据calcLimit的参数,计算会在前nEigens主要特征目标被提取后结束(这句话有点绕,应该就是提取了前nEigens个特征值,),另一种结束的情况是:目前特征值同最s大特征值的比值降至calcLimit的epsilon值之下。
赋值如下calcLimit = cvTermCriteria( CV_TERMCRIT_ITER, nEigens, 1);
它的类型定义如下:
typedef struct CvTermCriteria
{
  int type;  int max_iter;    //最大迭代次数
  double epsilon;    //结果精确性
}
avg:训练样本的平均图像
eigVals:以降序排列的特征值的行向量指针。可以为0。

最后将所得数据形成一个facedata.xml“文件保存下来,它可以随时被重新载入来识别经训练过的人。

图像在特征空间的投影:

[html] view plaincopy
print?在CODE上查看代码片派生到我的代码片
  1. void cvEigenDecomposite( IplImage* obj, int nEigObjs, void* eigInput,int ioFlags, void* userData, IplImage* avg, float* coeffs );  


 

obj:输入图像,训练或识别图像
nEigObjs:特征空间的eigen数量
eigInput:特征空间中的特征脸
ioFlags、userData:默认为0
avg:特征空间中的平均图像
coeffs:这是唯一一个输出,即人脸在子空间的投影,特征值

识别的过程

1. 读取用于测试的图片。

2. 平均人脸,特征脸和特征值(比率)使用函数“loadTrainingData()” 从人脸识别数据库文件(the face recognition database fil)“facedata.xml”载入。

3. 使用OpenCV的函数“cvEigenDecomposite()”,每张输入的图片都被投影到PCA子空间,来观察哪些特征脸的比率最适合于代表这张图片。

4. 现在有了特征值(特征脸图片的比率)代表这张输入图片,程序需要查找原始的训练图片,找出拥有最相似比率的图片。这些用数学的方法在“findNearestNeighbor()”函数中执行,采用的是“欧几里得距离(Euclidean Distance)”,但是它只是基本地检查输入图片与每张训练图片的相似性,找到最相似的一张:一张在欧几里得空间上与输入图片距离最近的图片。就像在 Servo Magazine的文章上提到的那样,如果使用马氏距离( the Mahalanobis space,需要在代码里定义 USE_MAHALANOBIS_DISTANCE),你可以得到更准确的结果。

5. 在输入图片与最相似图片之间的距离用于确定可信度(confidence),作为是否识别出某人的指导。1.0的可信度意味着完全相同,0.0或者负的可信度意味着非常不相似。但是需要注意,我在代码中用到的可信度公式只是一个非常基本的可信度测量,不是很可靠,但是我觉得多数人会想要看到一个粗略的可信度值。你可能发现它对你的图片给出错误的值,所以你可以禁用它(比如:把可信度设为恒定的1.0)。

一旦指导哪张训练图片和输入图片最相似,并假定可信度值不是太低(应该至少是0.6或更高),那么它就指出了那个人是谁,换句话说,它识别出了那个人!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot部署项目到Docker仓库

SpringBoot部署项目到Docker仓库1.开启远程控制端口Centos7开启方式: vim /lib/systemd/system/docker.service找到ExecStart行 ExecStart/usr/bin/dockerd -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock 重启docker 启动 systemctl start docker守护进程…

人脸识别经典方法

这篇文章是撸主要介绍人脸识别经典方法的第一篇,后续会有其他方法更新。特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的。特征脸用到的理论基础PCA在另一篇博客里:特征脸(Eigenface)理论基础-PCA(主成分分析法)…

svm参数说明

svm参数说明---------------------- 如果你要输出类的概率,一定要有-b参数 svm-train training_set_file model_file svm-predict test_file model_fileoutput_file 自动脚本:Python easy.py train_data test_data 自动选择最优参数,自动进行…

poj-3667(线段树区间合并)

题目链接&#xff1a;传送门 参考文章&#xff1a;传送门 思路&#xff1a;线段树区间合并问题&#xff0c;每次查询到满足线段树的区间最左值&#xff0c;然后更新线段树。 #include<iostream> #include<cstdio> #include<cstring> using namespace std; co…

车牌识别之颜色选取

车牌定位是车牌识别中第一步&#xff0c;也是最重要的一步。 由于中国车牌种类多样&#xff0c;颜色不一&#xff0c; 再加上车牌经常有污损&#xff0c;以及车牌周围干扰因素太多&#xff0c;都成为了车牌定位的难点。 这里首先使用最简单算法来描述车牌定位&#xff0c;以及他…

Python - 排序( 插入, 冒泡, 快速, 二分 )

插入排序 算法分析 两次循环, 大循环对队列中的每一个元素拿出来作为小循环的裁定对象 小循环对堆当前循环对象在有序队列中寻找插入的位置 性能参数 空间复杂度  O(1) 时间复杂度  O(n^2) 详细代码解读 import randomdef func(l):# 外层循环: 对应遍历所有的无序数据for i…

[EmguCV|C#]使用CvInvoke自己繪製色彩直方圖-直方圖(Hitsogram)系列(4)

2014-02-0610325 0C# 檢舉文章 過年結束了&#xff0c;雖然還是學生所以其實還有兩個禮拜的假期&#xff0c;不過為了不讓自己發慌&#xff0c;趁著假期多利用充實自己&#xff0c;所以提早回到開工狀態&#xff0c;而這次總算要把一直說的自己動手繪製猜色直方圖文章寫出。 …

轮廓的查找、表达、绘制、特性及匹配(How to Use Contour? Find, Component, Construct, Features Match)

前言 轮廓是构成任何一个形状的边界或外形线。前面讲了如何根据色彩及色彩的分布&#xff08;直方图对比和模板匹配&#xff09;来进行匹配&#xff0c;现在我们来看看如何利用物体的轮廓。包括以下内容&#xff1a;轮廓的查找、表达方式、组织方式、绘制、特性、匹配。 查…

itcast-ssh-crm实践

分析 BaseDao 文件上传 转载于:https://www.cnblogs.com/hellowq/p/10209761.html

分类器大牛们

David Lowe&#xff1a;Sift算法的发明者&#xff0c;天才。 Rob Hess&#xff1a;sift的源码OpenSift的作者&#xff0c;个人主页上有openSift的下载链接&#xff0c;Opencv中sift的实现&#xff0c;也是参考这个。 Koen van de Sande&#xff1a;作者给出了sift,densesift,co…

利用python脚本程序监控文件被修改

需求&#xff1a;利用python编写监控程序&#xff0c;监控一个文件目录&#xff0c;当目录下的文件发生改变时&#xff0c;实现有修改就发报警邮件 邮件使用QQ邮箱&#xff0c;需要开启smtp&#xff0c;使用手机发生短信&#xff0c;腾讯会给你发邮箱密码。如下所示&#xff1a…

Oracle RAC

环境如下&#xff1a; Linux操作系统&#xff1a;Centos 6.5 64bit &#xff08;这个版本的redhat 6内核等OS在安装grid最后执行root.sh时会出现crs-4124&#xff0c;是oracle11.2.0.1的bug&#xff09; VMware version&#xff1a;Workstation 8.0.3 build-703057 Oracle…

Activiti多人会签例子

Activiti中提供了多实例任务&#xff08;for-each&#xff09;将多实例应到到UserTask中可以实现会签功能。 Multi-instance (for each) Description A multi-instance activity is a way of defining repetition for a certain step in a business process. In programming …

MySQL-ProxySQL中间件(一)| ProxySQL基本概念

目录 MySQL-ProxySQL中间件&#xff08;一&#xff09;| ProxySQL基本概念&#xff1a; https://www.cnblogs.com/SQLServer2012/p/10972593.htmlMySQL-ProxySQL中间件&#xff08;二&#xff09;| Admin Schemas介绍&#xff1a;https://www.cnblogs.com/SQLServer2012/p/109…

标签td设置隐藏(hidden)

这样设置这个td就不会被其他的td给挤掉了! 还有一种方法就是把tr标签的solid设置为0px 这个方法把td标签的left,right,bottom,top的边框的solid全部设置为0px;转载于:https://www.cnblogs.com/tranquilityMan/p/10972811.html

Windows Server 2008 NFS

打开Windows Server 2008的Dos运行窗口&#xff08;不是powershell&#xff09;&#xff0c;然后键入&#xff1a; servermanagercmd.exe -install FS-NFS-Services 安装完毕之后&#xff0c;就要把NFS的存贮映射到Windows Server 2008上某个盘符以供使用&#xff0c;但为了…

金融反欺诈模型----项目实战--机器学习

机器学习&#xff1a;从源数据清洗到特征工程建立谈金融反欺诈模型训练 本文旨在通过一个完整的实战例子&#xff0c;演示从源数据清洗到特征工程建立&#xff0c;再到模型训练&#xff0c;以及模型验证和评估的一个机器学习的完整流程。由于初识机器学习&#xff0c;会比较多的…

Win7下如何挂载NFS共享目录

NFS是Unix中广泛使用的文件共享协议&#xff0c;在Linux下得到了传承&#xff0c;使用简单&#xff0c;读写性能强大。过去Windows与Linux共享文件夹需要使用Samba&#xff08;CIFS&#xff09;协议&#xff0c;虽然定制性更高&#xff0c;但设置和使用都比较繁琐。Windows 7加…

ECharts 点击非图表区域的点击事件不触发问题

1. 通过 myChart.getZr().on(click, fn) 监听整个图表的点击事件&#xff0c;注册回调 myChart.getZr().on(click, () > {//拿到index即可取出被点击数据的所有信息console.log(clickIndex) }) 2. 在 tooltip 的 formatter 函数中&#xff0c;每次调用都记录下需要的参数&am…

强大的django-debug-toolbar,django项目性能分析工具

强大的django-debug-toolbar,django项目性能分析工具 给大家介绍一个用于django中debug模式下查看网站性能等其他信息的插件django-debug-toolbar 首先安装 pip install django-debug-toolbar 接下来在自己django项目中的settings中添加配置 INSTALLED_APPS [debug_toolbar,]M…