数学笔记1——导数1(导数的基本概念)


 什么是导数

  导数是高数中的重要概念,被应用于多种学科。

  从物理意义上讲,导数就是求解变化率的问题;从几何意义上讲,导数就是求函数在某一点上的切线的斜率。

  我们熟知的速度公式:v = s/t,这求解的是平均速度,实际上往往需要知道瞬时速度:

  当t趋近于t0,即t-t0趋近于0时,得到的就是顺时速度。设Δt=t-t0,s是t的函数s=f(t),瞬时速度用数学表示就是:

  为什么s=f(t)呢?请看下图:

  将横轴作为距离,以时间为单位分隔,在t0时间经过的距离是f(t0)=S0,在t时间经过的距离是f(t)=s

  在几何上,如下图所示:

  直线a与曲线相切于点Q,直线b与曲线相割于点Q和点P。b的斜率,k=(y-y0)/(x-x0),当b以Q为轴心沿着曲线旋转时,铉长|PQ|趋近于0,即x->x0时,极限存在:

  有上述两个问题可以看出,变化率和切线的问题都可以归结为下面的公式:

  定义Δx = x-x0, Δy = y - y0 = f(x) – f(x0) = f(x0 + Δx) - f(x0),上面的公式可以写成:

  由此得出导数的概念,设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处取得增量Δx(点x0+Δx仍在该邻域内)时,相应地函数y取得增量Δy;如果Δy与Δx之比当Δx->0时的极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数,记作f’(x0) :

  也记作:

  简写为:

1/x求导

  根据导数公式,代入f(x) = 1/x

  这就OK了,所以说导数很简单,因为它仅有一个公式,但没完,因为上式没有任何意义,仅仅是看起来更复杂了。如果我们直接观察导数公式,对于所有求导,当Δx->0时,分母为0,所以必须将导数进一步简化。

  需要注意的是,求f’(x)的完整说法是求f(x)在定义域某一点的导数,所以x是已知的,求某一点的导数,当然要知道这个点是什么。

求切线所在三角形的面积

  如下图所示,直线MN是曲线1/x的切线,切点是(x0,y0),求S△MON

  S△MON = 1/2(MO * ON),已知条件是切点(x0,y0),需要求解的未知条件是MO和NO。

  直线MN的公式是y=kx+b,根据上节的介绍,1/x在(x0,y0)的导数是MN的斜率 -1/x02,代入得:

  y0=-1/x0+ b   =>

   1/x= (-1/x02) x0+ b  =>

    b = 2/x0

  设N点的坐标是(x,0),代入y=kx+b得:

       0=(-1/x02)x+2/x0  => x = 2x0

  即OM = 2x0

  同理,MO=2y0

  S△MON = 1/2(MO * ON) = 1/2(2x02y0) = 1/2(2x0)(2/x0) = 2

幂函数求导

  f(x) = Xn的导数:f’(x) = nxn-1

  例:(3x6)’ = 3 * 6x6-1 =  18x5

  该公式可以扩展到多项式中:

  (3x3 + 6x10)' = 3 * 3x3-1 + 6 * 10 x10-1 = 9x2 + 60x9

sin和cos求导

  下面是sinx和cosx的去曲线图:

sinx

cosx

  sin0°= 0,sin90°= sin(π/2) = 1

  求导时需要用到几个公式:

  1、2不解释,3、4后面会给出证明:

(sinx)’

(cosx)’

为什么会有公式3、4

  ,需要从几何意义上证明。

  上图是一个单位圆,将Δx用θ替换。由于单位圆r=1,弧长MN=(2πr ) (θ/360) = (2πr)(θ/2π) =θ。

  公式3:

  当θ趋近于0时,PN比弧长MN更快地趋近于0,所以公式3成立。

  公式4:sinθ=MP/OM=MP. 当θ趋近于0时,MP越来越趋近与MN(趋近但不等于0),所以

函数可导的条件

  如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。

  可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

  下面是两个不可导的例子:

f(x)=x1/3

  f(x)=x1/3,f’(x)=x-2/3/3在x=0处分母为0,所以在x=0处不可导。实际上该函数在x=0处的切线是y轴,导数趋近于无穷,不符合导数的定义。

f(x)=|x|

  几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的。f(x)=|x|在x=0点时,曲线没有唯一方向,即在x=0点没有切线,所以该函数在x=0点不可导。

总结

  1. 导数的物理意义:描述变化率,几何意义:切线的斜率
  2. 导数公式:
  3. 基本函数求导公式

1)       (C)’ = 0

2)       (1/x)’ = -1/x2

3)       (xn)’ = nxn-1

4)       (sinx)’ = cosx

5)       (cosx)’=-sinx

  4.可导的充要条件,它的左右极限存在且相等;可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387255.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python接口自动化(四)--接口测试工具介绍(详解)

简介 “工欲善其事必先利其器”,通过前边几篇文章的介绍,大家大致对接口有了进一步的认识。那么接下来让我们看看接口测试的工具有哪些。 目前,市场上有很多支持接口测试的工具。利用工具进行接口测试,能够提供测试效率。例如&…

机器学习09支持向量机

支持向量机(Support Vector Machines) 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法 A 还是学习算法 B,而更重要的是, 应用这些算法时,所创建的大量数据在应用这些算…

数学笔记2

数学笔记2——导数2(求导法则和高阶导数)和、差、积、商求导法则设uu(x),vv(x)都可导,则:(Cu)’ Cu’, C是常数(u v)’ u’ v’(uv)’ u’ v’(u/v)’ (u’v – uv’) / v21、2不解释,下面给出3、4的推导过程乘法法则的推导过乘法法则…

机器学习10聚类

无监督学习 在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中, 然后让它找这个数据的内在结构。 我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇)&am…

关联分析(Association analysis)

关联分析(Association analysis) 简介 大量数据中隐藏的关系可以以‘关联规则’和‘频繁项集’的形式表示。rules:{Diapers}–>{Beer}说明两者之间有很强的关系,购买Diapers的消费者通常会购买Beer。 除…

机器学习11主成分分析

降维(Dimensionality Reduction) : 一、 降维目的: 目的一:数据压缩(Data Compression) 目的二:数据可视化(Visualization) 二、 主成分分析(PCA) 主成分…

使用Apriori进行关联分析(一)

使用Apriori进行关联分析(一)大型超市有海量交易数据,我们可以通过聚类算法寻找购买相似物品的人群,从而为特定人群提供更具个性化的服务。但是对于超市来讲,更有价值的是如何找出商品的隐藏关联,从而打包促…

主成分分析法 (PCA) 用于数据可视化实验 -- Matlab版

第一步:下载数据集。 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#pendigits 第二步:改变数据格式。 注:此数据集的各特征值均为像素,即属于同一量纲,故无需归一化步骤。 原格式为&a…

机器学习12推荐系统

推荐系统(Recommender Systems) 推荐系统根据浏览用户过去买过什么书,或过去评价过什么电影来判断并推荐新产品给用户。 这些系统会为像亚马逊和网飞这样的公司带来很大一部分收入。 因此,对推荐系统性能的改善,将对这些企业的有实质性和…

使用Apriori进行关联分析(二)

使用Apriori进行关联分析(二)书接上文(使用Apriori进行关联分析(一)),介绍如何挖掘关联规则。发现关联规则我们的目标是通过频繁项集挖掘到隐藏的关联规则。所谓关联规则,指通过某个…

数学笔记3——导数3(隐函数的导数)

数学笔记3——导数3(隐函数的导数)幂函数的扩展形式f(x) xn的导数:f’(x) nxn-1,n是整数,该公式对f(x) xm/n, m,n 是整数同样适用。推导过程:什么是隐函数引自知乎:“如果方程F(x,y)0能确定y…

机器学习13大规模数据集

大型数据集的学习(Learning With Large Datasets) 如果我们有一个低方差的模型, 增加数据集的规模可以帮助你获得更好的结果。 我们应该怎样应对一个有 100 万条记录的训练集? 以线性回归模型为例,每一次梯度下降…

Java07多线程

14 多线程 操作系统的多任务(multitasking):在同一时刻运行多个程序的能力。 多线程在较低的层次上扩展了多任务的概念:一个程序同时执行多个任务。 通常,每一个任务称为一个线程(tread)&…

MySQL字段拼接Concat

有时候,从数据库中拿出的数据并不是我们想要的格式,比如,有以下的vendors表 如果,想以 name (location)的格式展现出来,那么就要用到MySQL的Concat了。 Concat()拼接串,即把多个串连接起来形成一个较长的串…

使用pycharm调用模块后字体变灰 是什么原因呢?

使用pycharm调用模块后字体变灰 是什么原因呢?点击小灯泡提示出现以下内容:This inspection detects names that should resolve but dont. Due to dynamic dispatch and duck typing, this is possible in a limited but useful number of cases. Top-l…

操作系统01概述

第一章 概论 《Operating System Internals and Design Principles》 《Applied Operating System Concepts》 操作系统——裸机上的第一层软件,它是对硬件系统功能的首次扩充,填补人与机器之间的鸿沟。 1.1 操作系统与计算机同在 1.2 对操作系统的…

Linux re

正则表达式并不是一个工具程序,而是一个字符串处理的标准依据,如果想要以正则表达式的方式处理字符串,就得使用支持正则表达式的工具,例如grep、vi、sed、asw等。 注意:ls不支持正则表达式。 grep 正则表达式: 注意gr…

操作系统02进程管理Process_Description_and_Control

作业的基本概念:用户再一次计算过程中或一次事务处理过程中,要求计算机系统所做的工作的集合。 包含多个程序、多个数据、作业控制说明书 系统调用时操作系统提供给编程人员的唯一接口。 1、文件操作类; 2、进程控制类; 3、资…

蓝桥杯 方格填数(全排列+图形补齐)

方格填数 如下的10个格子 填入0~9的数字,同一数字不能重复填。要求:连续的两个数字不能相邻。(左右、上下、对角都算相邻) 一共有多少种可能的填数方案? 请填写表示方案数目的整数。注意:你提交的应该是一个…

操作系统03进程管理Process_Scheduling

2 Process Scheduling >Type of scheduling >Scheduling Criteria (准则) >Scheduling Algorithm >Real-Time Scheduling (嵌入式系统) 2.1 Learning Objectives By the end of this lecture you should be able to Explain what is Response Time 响应时间-…