虚拟地址空间

        对于每一个进程都会对应一个虚拟地址空间,对于32位的操作系统(其指令的位数最大为32位,因此地址码最多32位),虚拟地址空间的大小为2^{32}B即0~4GB的虚拟地址空间,其中内核空间为1GB,如下所示:

         每一个进程的进程控制块PCB都位于内核区,在每一个进程的PCB中有一个文件描述符表(是一个数组),用于标记该进程所打开的所有文件。从文件描述符表可以看出每一个进程最多能打开1024个文件,其中有三个文件默认是一直处于打开状态的(即进程创建完成时就处于打开状态),分别是:标准输入 STDIN_FILENO,其文件描述符为0;标准输出 STDOUT_FILENO,其文件描述符为1;错误输出 STDERR_FILENO,其文件描述符为2,其中文件描述符0和1可以省略不写。供我们用户打开的文件,只能够占据从3开始的位置(即其文件描述符为3以后的数字,3~1023)。每打开一个文件就会占用一个文件描述符,且使用的是空闲的最小的一个文件描述符。

        Linux下可执行文件的格式为ELF:[root@localhost Calc]# file zsx
                                                                     zsx: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.32, BuildID[sha1]=0x14ef2d34126e7c54141b73c31968bd825ca522ba, not stripped           //可以看出zsx为64位(即机器指令位数为64位,OS位数)的可执行文件,其格式为ELF。

        对于每一个程序在执行时(如上图中的a.out),此时会产生一个相应的进程,系统都会自动为其分配一个0~4G的虚拟地址空间,其中1G的内核空间用于:进程管理、内存管理、设备管理和虚拟文件系统等。下面详细介绍0~3G的用户空间。

         强调一点:以下说明的各段都是与编程相关的,不包括虚拟地址空间的全部。

        0~3G的用户空间。从小到大(从下往上)依次为:保留区(受保护的地址)、代码段、数据段(.data段)、.bss段、堆空间、内存映射段、栈空间、命令行参数和环境变量。下面依次对每一个段做简单的介绍:

1.保留区(受保护的地址)

        保留区即为受保护的地址,大小为0~4K,位于虚拟地址空间的最低部分,未赋予物理地址(不会与内存地址相对应,因此其不会放任何内容)。任何对它的引用都是非法的,用于捕捉使用空指针和小整型值指针引用内存的异常情况。大多数操作系统中,极小的地址通常都是不允许访问的,如NULL。C语言将无效指针赋值为0也是出于这种考虑,因为0地址上正常情况下不会存放有效的可访问数据。将指针赋值为0,意味着该指针将永远不会被使用,从而不会出现野指针情况。#define NULL 0 与 #define NULL (void*)0   在C语言中是等效的,而在C++中,只能用#define NULL 0,后面 #define NULL (void*)0的使用会出错。

2.代码段

        代码段也称正文段或文本段,通常用于存放程序执行代码(即CPU执行的机器指令)。一般C语言执行语句都编译成机器代码保存在代码段。通常代码段是可共享的,因此频繁执行的程序只需要在内存中拥有一份拷贝即可。代码段通常属于只读,以防止其他程序意外地修改其指令(对该段的写操作将导致段错误)。某些架构也允许代码段为可写,即允许修改程序。  

3.数据段(.data段)

        数据段通常用于存放程序中已初始化的全局变量和静态局部变量。数据段属于静态内存分配(静态存储区),可读可写。由于全局变量未初始化时,其默认值为0,因此值为0的全局变量位于.bbs段(不位于数据段)。对于未初始化的局部变量,其值是不可预测的。注意:在代码段和数据段之间还包括其它段:只读数据段和符号段等。

4..bbs段

        该段用于存放未初始化的全局变量和静态局部变量,包括值为0的全局变量。 数据段和.bbs段又称为全局数据区,前者初始化,后者未初始化。

        ELF段包括:代码段、其它段(只读数据段和符号段等)、.data段(数据段)和.bbs段,都属于可执行程序部分。

5.堆空间

        new( )和malloc( )函数分配的空间就属于对空间,用于内存空间的分配,其从下往上。  堆用于存放进程运行时动态分配的内存段,可动态扩张或缩减。堆中内容是匿名的,不能按名字直接访问,只能通过指针间接访问。当进程调用malloc(C) 和new (C++)等函数分配内存时,新分配的内存动态添加到堆上(扩张);当调用free(C)/delete(C++)等函数释放内存时,被释放的内存从堆中剔除(缩减) 。

6.内存映射段(共享库)

        此处,内核将硬盘文件的内容直接映射到内存, 任何应用程序都可通过Linux的mmap()系统调用请求这种映射。内存映射是一种方便高效的文件I/O方式, 因而被用于装载动态共享库。如C标准库函数(fread、fwrite、fopen等)和Linux系统I/O函数,它们都是动态库函数,其中C标准库函数都被封装在了/lib/libc.so库文件中,都是二进制文件。这些动态库函数都是与位置无关的代码,即每次被加载进入内存映射区时的位置都是不一样的,因此使用的是其本身的逻辑地址,经过变换成线性地址(虚拟地址),然后再映射到内存。而静态库不一样,由于静态库被链接到可执行文件中,因此其位于代码段,每次在地址空间中的位置都是固定的。

7.栈空间

        用于存放局部变量(非静态局部变量,C语言称为自动变量),分配存储空间时从上往下。栈和堆都是后进先出的数据结构。

8.命令行参数

        该段用于存放命令行参数的内容:argc和argv。

9.环境变量

        用于存放当前的环境变量,在Linux中用env命令可以查看其值。

10.虚拟地址空间的作用(好处)

        1.方面编译器和操作系统安排程序的地址;2.方便实现各个进程空间之间的隔离,互不干扰,因为每个进程都对应自己的虚拟地址空间;3.实现虚拟存储,从逻辑上扩大了内存。

补充内容:

代码段(.text段)与只读数据段和符号段(.rodata段),都属于只能读的部分,在链接的时候这两部分会链接成为一个整体;而.data段和.bbs段属于可读可写RW的部分。这四个部分都是以页(每页4KB)的形式存放在内存中。进程控制块PCB(又叫进程描述符)放于内核空间

多个进程在并发执行时,这些进程的用户空间都是彼此独立的,因此各个进程的用户空间在映射为内存空间使都是独立的,互不干扰,这是MMU地址变换必须要能够保证的。例如,各个进程的.text段、只读数据段和符号段、.data段和.bbs段等在用户空间中使用到的其它数据信息,都会与页为基本单位放在内存中,各个进程的映射是独立的。而对于内核空间,由于只有一个操作系统,内核空间主要是 机器指令、操作系统内核的各个模块等,它们是公用的,因此每个进程的映射方式一样。强调一点:每个进程用到或即将用到的数据才会调入内存,其余都在磁盘上。但是各个进程内核空间的进程控制块(进程描述符)映射的地点是不一样的,也是相互独立的。共用的模块才是一样的。 这些都是MMU的实现机制所决定的。如果感兴趣,可以看看MMU的实现机制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/385435.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态库(共享库)的制作和使用

Linux下的动态库为lib*.so格式的二进制文件(目标文件),对应于Windows下的.dll格式的文件。 (1)命名规则 lib库名.so (2)动态库的制作 1)生成与位置无关的代码(.o&…

网络编程套接字API

uint32_t htonl(uint32_t hostlong); uint16_t htons(uint16_t hostshort); uint32_t ntohl(uint32_t netlong); uint16_t ntohs(uint16_t netshort);int inet_pton(int family, const char *strptr, void *addrptr); 分析: 第一个参数可以是AF_INET或AF_INET6&am…

gdb调试器(三)

File/file 装入想要调试的可执行文件 run(r) 执行当前被调试的程序 kill(k) 终止正在调试的程序 quit(q) 退出gdb shell 使用户不离开gdb就可以执行Linux的shell命令 backtrace(bt) 回溯跟踪(当对代码进行调试时,run后…

makefile文件的书写规则(make和makefile)

对于makefile,掌握一个规则,两个变量和三个函数。下面介绍一个规则。 makefile的作用:一个项目代码的管理工具。当一个项目的代码文件数(如.c文件)太多,用gcc编译会太麻烦,如果全部文件一次性编…

makefile的两个变量(自动变量和普通变量)

(1)普通变量 如: objmain.o add.o sub.o mul.o div.o //将后面的值赋值给obj,obj就是一个普通变量 targetzsx //将zsx赋值给target makefile中已经定义的一些普通变量(通常格式都是大写,类似环境变量,它们都是普通…

【C++ Priemr | 15】虚函数表剖析(二)

一、多重继承&#xff08;无虚函数覆盖&#xff09; 下面&#xff0c;再让我们来看看多重继承中的情况&#xff0c;假设有下面这样一个类的继承关系。注意&#xff1a;子类并没有覆盖父类的函数。 测试代码&#xff1a; class Base1 { public: virtual void f() { cout <…

makefile中的两个函数(wildcard和patsubst)

(1) wildcard函数 作用是查找指定目录下指定类型的文件&#xff0c;并最终返回一个环境变量&#xff0c;需要用$取值赋值给另一个环境变量&#xff01;该函数只有一个参数&#xff0c;如取出当前目录下的所有.c文件&#xff0c;并赋值给allc普通变量&#xff1a; allc$(wildc…

C库函数

Linux的系统I/O函数&#xff08;read、write、open、close和 lseek等&#xff09;与C语言的C库函数&#xff08;libc.so库文件中&#xff09;都是相对应的&#xff0c;它们都是动态库函数。如下图所示&#xff0c;C库函数有fopen、fclose、fwrite、fread和fseek等。这些C库函数…

C库函数与Linux系统函数之间的关系

由上小节知道&#xff0c;C库函数是借助FILE类型的结构体来对文件进行操作的&#xff0c;其本身只是在用户空间&#xff08;I/O缓冲区&#xff09;进行读写操作&#xff0c;而数据在内核与用户空间之间的传递、以及将内核与I/O设备之间的数据传递都是该C库函数进行一系列的系统…

open函数和errno全局变量

&#xff08;1&#xff09;open函数 man man 查看man文档的首页 其中DESCRIPTION部分描述了man文档的每一章的章节内容 第2章System calls为系统调用&#xff0c;即Liunx系统函数。 man 2 open 查看第二章的open函数的详细帮助文件。 open函数用于打开一个已经的文件或者创…

open函数和close函数的使用

学习几个常用的Linux系统I/O函数&#xff1a;open、close、write、read和lseek。注意&#xff0c;系统调用函数必须都考虑返回值。 &#xff08;1&#xff09;open函数的使用 首先&#xff0c;需要包含三个头文件&#xff1a;<sys/types.h> <sys/stat.h> <…

1091. Acute Stroke (30)

One important factor to identify acute stroke (急性脑卒中) is the volume of the stroke core. Given the results of image analysis in which the core regions are identified in each MRI slice, your job is to calculate the volume of the stroke core. Input Speci…

stat函数(stat、fstat、lstat)

#include <sys/types.h> #include <sys/stat.h> #include <unistd.h> //需包含头文件 有如下三个函数的函数原型&#xff1a; int stat(const char *path, struct stat *buf); 第一个形参&#xff1a;指出文件&#xff08;文件路径&#xff09;&…

【Leetcode | 235】 235. 二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个结点 p、q&#xff0c;最近公共祖先表示为一个结点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&#xff08;一个节点也可以是它自己…

CPU和MMU(内存管理单元)

CPU的架构&#xff1a;要求能够理解从源程序到微指令的整个经历过程&#xff1a;存储器的层次结构&#xff08;网络资源下载到硬盘、磁盘缓存、内存、Cache、寄存器&#xff09;&#xff1b;CPU的四大部分&#xff1a;ALU、CU、中断系统和寄存器&#xff1b;程序执行的整个过程…

【C++ Primer | 09】容器适配器

一、stack s.push(): 向栈内压入一个成员&#xff1b; s.pop(): 从栈顶弹出一个成员&#xff1b; s.empty(): 如果栈为空返回true&#xff0c;否则返回false&#xff1b; s.top(): 返回栈顶&#xff0c;但不删除成员&#xff1b; s.size(): 返回栈内元素…

进程控制块PCB(进程描述符)

&#xff08;1&#xff09;PCB 每个进程在内核中都有一个进程控制块&#xff08;PCB&#xff09;来维护进程相关的信息&#xff0c;Linux内核的进程控制块是task_struct结构体。grep -r “task_struct” / 可以查找根目录下&#xff0c;包含task_struct的文件文件。或者 find…

【C++ Primer | 19】控制内存分配

1. 测试代码&#xff1a; #include <iostream> #include <new> #include <cstring> #include <cstdlib> using namespace std;void* operator new(size_t size) {cout << "global Override operator new" << endl;if (void* p…

【第15章】虚函数

一、为什么基类中的析构函数要声明为虚析构函数&#xff1f; 直接的讲&#xff0c;C中基类采用virtual虚析构函数是为了防止内存泄漏。具体地说&#xff0c;如果派生类中申请了内存空间&#xff0c;并在其析构函数中对这些内存空间进行释放。假设基类中采用的是非虚析构函数&am…

【C++ Primer | 08】IO库

一、istringstream类 描述&#xff1a;从流中提取数据&#xff0c;支持 >> 操作 这里字符串可以包括多个单词&#xff0c;单词之间使用空格分开 #include <iostream> #include <sstream> using namespace std; int main() {istringstream istr(&quo…