ntohs(), ntohl() , htons(), htonl(), inet_ntoa(), inet_pton(), atoi()汇总

在C/C++写网络程序的时候,往往会遇到字节的网络顺序和主机顺序的问题。这是就可能用到htons(), ntohl(), ntohs(),htons()这4个函数。
网络字节顺序与本地字节顺序之间的转换函数:

htonl()--"Host to Network Long"
ntohl()--"Network to Host Long"
htons()--"Host to Network Short"
ntohs()--"Network to Host Short"

之所以需要这些函数是因为计算机数据表示存在两种字节顺序:NBO与HBO

网络字节顺序NBO(Network Byte Order): 按从高到低的顺序存储,在网络上使用统一的网络字节顺序,可以避免兼容性问题。

主机字节顺序(HBO,Host Byte Order): 不同的机器HBO不相同,与CPU设计有关,数据的顺序是由cpu决定的,而与操作系统无关。
如 Intel x86结构下, short型数0x1234表示为34 12, int型数0x12345678表示为78 56 34 12  
如 IBM power PC结构下, short型数0x1234表示为12 34, int型数0x12345678表示为12 34 56 78
   
由于这个原因不同体系结构的机器之间无法通信,所以要转换成一种约定的数序,也就是网络字节顺序,其实就是如同power pc那样的顺序. 在PC开发中有ntohl和htonl函数可以用来进行网络字节和主机字节的转换.

在Linux系统下:htonl(),htons(), ntohl(), ntohs()的头文件及函数定义:  

  #include <arpa/inet.h> 
  uint32_t htonl(uint32_t hostlong);   

  uint16_t htons(uint16_t hostshort);   

  uint32_t ntohl(uint32_t netlong);   

  uint16_t ntohs(uint16_t netshort); 
  在windows系统下:htonl(),htons(), ntohl(), ntohs(), inet_addr()使用说明  

  ntohs()   简述: 
  将一个无符号短整形数从网络字节顺序转换为主机字节顺序。  

  #include <winsock.h> 
  u_short PASCAL FAR ntohs( u_short netshort);   

  netshort:一个以网络字节顺序表达的16位数。   注释: 
  本函数将一个16位数由网络字节顺序转换为主机字节顺序。   

  返回值:ntohs()返回一个以主机字节顺序表达的数。  

 

 ntohl()   简述: 
  将一个无符号长整形数从网络字节顺序转换为主机字节顺序。   

#include <winsock.h> 
 u_long PASCAL FAR ntohl( u_long netlong);

 netlong:一个以网络字节顺序表达的32位数。  

 注释: 
  本函数将一个32位数由网络字节顺序转换为主机字节顺序。   

返回值: 
  ntohl()返回一个以主机字节顺序表达的数。   

 

htons()   简述: 
  将主机的无符号短整形数转换成网络字节顺序。

//将无符号短整型主机字节序转换为网络字节序 
  #include <winsock.h> 
  u_short PASCAL FAR htons( u_short hostshort);   

  hostshort:主机字节顺序表达的16位数。   

  注释: 
  本函数将一个16位数从主机字节顺序转换成网络字节顺序。 

  返回值: 
  htons()返回一个网络字节顺序的值。 
  简单地说,htons()就是将一个数的高低位互换   (如:12 34 --> 34 12)  

  VB表示: 
  MsgBox Hex(htons(&H1234))   显示值为 3412  

 

  htonl() 
  简述: 
  将主机的无符号长整形数转换成网络字节顺序。

   //将无符号长整型网络字节序转换为主机字节序 
  #include <winsock.h> 
  u_long PASCAL FAR htonl( u_long hostlong); 
  hostlong:主机字节顺序表达的32位数。 

  注释: 
  本函数将一个32位数从主机字节顺序转换成网络字节顺序。   

  返回值: 
  htonl()返回一个网络字节顺序的值。   

  

  inet_addr()   简述: 
  将一个点间隔地址转换成一个in_addr。   

  #include <winsock.h> 
  unsigned long PASCAL FAR inet_addr( const struct FAR* cp); 
  cp:一个以Internet标准“.”间隔的字符串。

  例如202.38.214.xx   当IP地址为255.255.255.255是被认为无效IP地址。 
  本函数解释cp参数中的字符串,这个字符串用Internet的“.”间隔格式表示一个数字的Internet地址。   

  返回值: 
  一个无符号长整形数,可用作Internet地址。所有Internet地址以网络字节顺序返回(字节从左到右排列)。

 

  inet_ntoa()   简述: 
  将网络地址转换成“.”点隔的字符串格式。   

#include <winsock.h> 
char FAR* PASCAL FAR inet_ntoa( struct in_addr in); 
 

in:一个表示Internet主机地址的结构。  

 注释: 
  本函数将一个用in参数所表示的Internet地址结构转换成以“.” 间隔的诸如“a.b.c.d”的字符串形式。请注意inet_ntoa()返回的字符串存放在WINDOWS套接口实现所分配的内存中。应用程序不应假设该内存是如何分配的。在同一个线程的下一个WINDOWS套接口调用前,数据将保证是有效。 
  当IP地址为255.255.255.255是认为有效IP地址。这是与inet_addr()的区别   

 返回值: 
  若无错误发生,inet_ntoa()返回一个字符指针。否则的话,返回NULL。其中的数据应在下一个WINDOWS套接口调用前复制出来。  

  inet_aton()   与inet_ntoa()作用相反。   

 

inet_pton()   简述: 
  本函数将点分十进制转换为整数   

#include <sys/types.h>   

#include <sys/socket.h>   

#include <arpa/inet.h>
int inet_pton(int af, const char *src, void *dst); 
  这个函数转换字符串到网络地址,第一个参数af是地址族,转换后存在dst中   inet_pton 是inet_addr的扩展,支持的多地址族有下列:   af = AF_INET 
  src为指向字符型的地址,即ASCII的地址的首地址(ddd.ddd.ddd.ddd格式的),函数将该地址 
  转换为in_addr的结构体,并复制在*dst中   af =AF_INET6 
  src为指向IPV6的地址,,函数将该地址转换为in6_addr的结构体,并复制在*dst中   如果函数出错将返回一个负值,并将errno设置为EAFNOSUPPORT,如果参数af指定的地址族和src格式不对,函数将返回0。   

 

#include <sys/types.h>   

#include <sys/socket.h>   

#include <arpa/inet.h> 
const char *inet_ntop(int af, const void *src, char *dst, socklen_t cnt); 
  这个函数转换网络二进制结构到ASCII类型的地址,参数的作用和上面相同,只是多了一个参数socklen_t cnt,他是所 
  指向缓存区dst的大小,避免溢出,如果缓存区太小无法存储地址的值,则返回一个空指针,并将errno置为ENOSPC   

 

atoi() 
  array to integer将字符串转换为整形数 首先,假设你已经有了一个sockaddr_in结构体ina,你有一个IP地址"132.241.5.10" 要储存在其中,你就要用到函数inet_addr(),将IP地址从 点数格式转换成无符号长整型。   使用方法如下: 
  ina.sin_addr.s_addr = inet_addr("132.241.5.10"); 
  注意,inet_addr()返回的地址已经是网络字节格式,所以你无需再调用 函数htonl()。   我们现在发现上面的代码片断不是十分完整的,因为它没有错误检查。 显而易见,当inet_addr()发生错误时返回-1。记住这些二进制数字?(无符 号数)-1仅仅和IP地址255.255.255.255相符合!这可是广播地址!大错特 错!记住要先进行错误检查。 
  好了,现在你可以将IP地址转换成长整型了。有没有其相反的方法呢? 它可以将一个in_addr结构体输出成点数格式? 这样的话,你就要用到函数 inet_ntoa()("ntoa"的含义是"network to ascii"),就像这样: 
  printf("%s",inet_ntoa(ina.sin_addr)); 
  它将输出IP地址。需要注意的是inet_ntoa()将结构体in-addr作为一 个参数,不是长整形。同样需要注意的是它返回的是一个指向一个字符的 指针。它是一个由inet_ntoa()控制的静态的固定的指针,所以每次调用 inet_ntoa(),它就将覆盖上次调用时所得的IP地址。例如: 
  char *a1, *a2;   a1 = inet_ntoa(ina1.sin_addr); /* 这是198.92.129.1 */   a2 = inet_ntoa(ina2.sin_addr); /* 这是132.241.5.10 */   printf("address 1: %s ",a1);   printf("address 2: %s ",a2);   输出如下: 
  address 1: 132.241.5.10   
address 2: 132.241.5.10 
  假如你需要保存这个IP地址,使用strcopy()函数来指向你自己的字符指针。   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/384776.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数字逻辑 Verilog】全面剖析数据选择器——从基础到拓展,从理论到设计的实现,从表面到本质

0 前言 0.1 使用环境 EDA工具&#xff1a;Vivado 2017.4硬件描述语言&#xff1a;Verilog HDL 0.2 涉及知识 数字逻辑Verilog 1 基础模块&#xff1a;一位四选一数据选择器 1.1 设计部分&#xff1a;层次建模 1.1.1 需求分析 设计一个一位的四选一数据选择器&#xff0…

exec函数族(部分 最常用的)

进程调用exec函数族执行某个程序 进程当前程序被执行程序替换 让父子进程执行不同的程序 父进程创建子进程 子进程调用exec函数族 父进程不受影响 #include<unistd.h> int execl(const char *path, const char *arg, ...) int execlp(const char *file, const cha…

【计算机网络】手动配置hosts文件解决使用GitHub和Coursera网站加载慢/卡的问题

目录0 前言1 打开hosts1.1 以管理员身份运行记事本1.2 打开hosts2 找到实际地址2.1 打开cmd2.2 找到网址3 替换地址3.1 修改hosts文件3.2 刷新4 后续内容的完善0 前言 本文是针对纯小白读者&#xff0c;没有涉及到任何的专业知识&#xff0c;你只需要按照步骤操作即可。 同时…

【汇编语言】镜像迁移能力之一通百通——由代码段和CS:IP的原理,掌握一类寄存器的使用

0 前言 你应该知道8086CPU的物理地址形成方式及其原理&#xff0c;才能完成本文的学习。 1 内存的分段 对于内存&#xff0c;人们人为地将其划分为一段一段的&#xff0c;比如代码段和数据段等&#xff0c;特别注意&#xff0c;这是人为划分的结果&#xff0c;方面人类使用&…

线程间通信————同步

同步 是指多个任务按照约定的先后次序 相互配合完成一件事情 信号量&#xff1a; 由信号量决定 线程是继续执行 还是阻塞等待 信号量代表某种资源 其值表示系统中该资源的数量 信号量是一个受保护的量 只能通过特定的三种操作来访问 初始化 P操作&#xff08;申请资源&…

【计算机组成原理 数字逻辑 Verilog】32位加法器的实现:支持整数的加减运算

目录0 前言0.1 使用环境0.2 知识点0.3 注意事项1 建模&#xff1a;1位加法器1.1 构建基础模型1.1.1 一位加法器1.1.1.1 科技黑箱&#xff1a;外部端口与功能1.1.1.2 揭秘黑箱&#xff1a;内部结构与模块1.1.2 从顶层模块提取低层模块&#xff1a;取反功能选择器1.1.2.1 科技黑箱…

线程间通信————互斥

互斥 临界资源 一次只允许一个任务&#xff08;进程&#xff0c;线程)访问的共享资源 临界区 访问临界资源的代码 互斥机制 mutex互斥锁 任务访问临界资源前申请锁 访问完后释放锁 互斥锁初始化 #include <pthread.h> int pthread_mutex_init(pthread_mutex_t *mute…

【Verilog HDL】门级描述 / 数据流描述 / 行为级描述——通过四选一多路选择器,实现对于不同层级描述方式的整体性认知

目录0 前言1 输出端口的设计1.1 门级描述和数据流描述1.2 行为级描述2 三种描述方式的整体架构2.1 门级描述2.2 数据流描述2.3 行为级描述2.4 补充&#xff1a;独立的语句2.5 小结3 理解三种描述方式的本质3.1 门级描述3.2 数据流描述3.3 行为级描述4 理解不同抽象层级描述方式…

线程创建-结束-回收 教程

ps aux -L 查看线程信息 且显示进程状态 使用进程的缺点: 进程切换 系统开销较大 开销大的原因 &#xff1a;切换时需要频繁刷新 cache(类似于缓冲区) 和TLB linux不区分线程 进程 线程其实也属于进程 只不过是特殊的进程 是一种可以共享地址空间的进程 使用线程的优点&#x…

【汇编语言】汇编实验IDE(集成开发环境):RadASM的安装和使用说明

0 前言 本文适合8086CPU的指令集。 对于重要的专业基础课程&#xff0c;汇编语言&#xff0c;做实验是必不可少的&#xff0c;但是由于汇编语言本身的缺陷&#xff0c;现代计算机并不能直接运行汇编语言程序&#xff0c;因此&#xff0c;一般老师会要求我们 使用虚拟机&…

【汇编语言】理解8086CPU中,不同类型的寄存器和汇编指令规则的联系(会继续更新)

0 前言 你是否因为汇编指令繁杂的规则而苦恼呢&#xff1f;作者本人也很烦&#xff0c;因为往往教材中只告诉我们规则&#xff0c;却不告诉我们为什么&#xff0c;没有原因就直接记忆&#xff0c;负担太大&#xff0c;后期灵活运用也增添阻力&#xff0c;因此&#xff0c;我经…

System V IPC之信号灯

信号灯也叫信号量 用于进程/线程同步或互斥的机制 信号灯的类型 1.Posix 无名信号灯 2.Posix 有名信号灯 3.System V 信号灯 信号灯的含义 计数信号灯&#xff08;1和2都是&#xff09; System V信号灯是一个或多个计数信号灯的集合&#xff08;可操作集合中的多个信号灯&…

【VS 2017 C语言 汇编语言】如何使用VS 2017,通过反汇编查看C语言代码对应的32位x86汇编语言 VS 2017单步调试的使用

0 前言 本文适用于VS的大多数版本&#xff0c;本文以VS 2017为例进行讲解。 1 编辑C语言代码 首先&#xff0c;在VS编译器中&#xff0c;创建项目&#xff0c;敲一段C语言代码&#xff0c;这个过程不解释了&#xff0c;如果不会请百度。 #include <stdio.h> #include…

System V IPC之共享内存

共享内存是一种最为高效的进程间通信方式&#xff0c;进程可以直接读写内存&#xff0c; 而不需要任何数据的拷贝 共享内存在内核空间创建&#xff0c; 可以被进程映射到用户空间访问 由于多个进程可同时访问共享内存 &#xff0c; 因此需要同步和互斥机制配合使用 共享内存的使…

【汇编语言】结合C语言,使用VS 2017调试模式下的反汇编工具学习32位x86汇编指令

0 前言 简要说明x86系列指令集的整体概况与变化。 我给到你补充学习内容&#xff1a;使用VS学习汇编语言的教程 1 8086CPU到现代CPU的变化 做一些了解即可&#xff0c;不是绝对的&#xff0c;取决于设计工艺以及用途&#xff0c;不同计算机不一样也正常。 1.1 CPU位数与地…

System V IPC之消息队列

消息队列由消息队列id来唯一标识 消息队列就是一个消息的列表 用户可以在消息队列中添加消息 读取消息 消息队列可以按照类型来发送和接收消息 消息队列使用步骤 打开/创建消息队列 msgget 向消息队列发送消息 msgsnd 从消息队列接收消息 msgrcv 控制消息队列 msgctl 创建/打开…

【汇编语言】学习源头知识:XLAT指令的本质(待更新)

0 前言 带你理解XLAT指令的本质. 我想让你清楚的是&#xff0c;XLAT指令 本质就是数据的传送&#xff1a;本质就是完成mov指令的传送功能&#xff0c;只不过源操作数的寻址方式是[bxal]&#xff0c;目标操作数是al表象是数据的转换&#xff1a;例如将十六进制转换为ASCII字符…

进程间通信————信号

信号 信号是在软件层次上对中断机制的一直模拟&#xff0c;是一种异步通信方式 linux内核通过信号通知用户进程&#xff0c; 不同的信号类型代表不同的事件 进程对信号有不同的响应方式 缺省方式 忽略信号 捕捉信号 SIGKILL和SIGSTOP这两个信号量 级别很高 只能执行默认操作…

【汇编语言】清华大学学堂在线《汇编语言程序设计》课程学习笔记

0 前言 全是基于x86系列处理器 1 寄存器与存储器的区别 2 汇编程序员眼中的系统结构 指令寄存器 PC&#xff08;Program Counter&#xff09; 指向下一条指令的地址 16位 CS:IP32位 EIP64位 RIP 寄存器与寄存器堆&#xff08;Registers&#xff09; 在处理器内部以名字方…

进程间通信————无名管道

无名管道 只能用于具有亲缘关系的进程之间的通信 单工的通信模式 具有固定的读端和写端 无名管道创建时会返回两个文件描述符 分别用于读写管道 只能用于亲属关系之间 创建无名管道 #include <unistd.h> int pipe(int pfd[2]) 成功返回0 失败返回EOF pfd包含两个元素的…