链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2544
题目:
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
Sample Output
3
2
Source
UESTC 6th Programming Contest Online
基础最短路,不解释,其实是专门用来验证各种最短路模板的。
在网上搜索的某神的博客,这些模板题其实没什么来讲的,自己再敲一遍和这也差不太远,图论的话多看书!
附原文链接: http://blog.csdn.net/shuangde800
1. Dijkstra 普通版
[cpp] view plaincopy
- #include<cstdio>
- #include<cstring>
- const int N=105, INF=9999999;
- int d[N], w[N][N],vis[N],n,m;
- void Dijkstra(int src){
- for(int i=1; i<=n; ++i)
- d[i] = INF;
- d[src] = 0;
- memset(vis, 0, sizeof(vis));
- for(int i=1; i<=n; ++i){
- int u=-1;
- for(int j=1; j<=n; ++j)if(!vis[j]){
- if(u==-1 || d[j]<d[u]) u=j;
- }
- vis[u] = 1;
- for(int j=1; j<=n; ++j)if(!vis[j]){
- int tmp = d[u] + w[u][j];
- if(tmp<d[j]) d[j] = tmp;
- }
- }
- }
- int main(){
- int a,b,c;
- while(~scanf("%d%d",&n,&m)&&n+m){
- for(int i=1; i<=n; ++i){
- w[i][i] = INF;
- for(int j=i+1; j<=n; ++j)
- w[i][j] = w[j][i] = INF;
- }
- for(int i=0; i<m; ++i){
- scanf("%d%d%d",&a,&b,&c);
- w[a][b] = w[b][a] = c;
- }
- Dijkstra(1);
- printf("%d\n", d[n]);
- }
- return 0;
- }
2. Dijkstra+邻接表(用数组实现)+优先队列优化
[cpp] view plaincopy
- #include<cstdio>
- #include<cstring>
- #include<utility>
- #include<queue>
- using namespace std;
- const int N=20005;
- const int INF=9999999;
- typedef pair<int,int>pii;
- priority_queue<pii, vector<pii>, greater<pii> >q;
- int d[N], first[N], u[N], v[N], w[N], next[N],n,m;
- bool vis[N];
- // 无向图的输入,注意每输入的一条边要看作是两条边
- void read_graph(){
- memset(first, -1, sizeof(first)); //初始化表头
- for(int e=1; e<=m; ++e){
- scanf("%d%d%d",&u[e], &v[e], &w[e]);
- u[e+m] = v[e]; v[e+m] = u[e]; w[e+m] = w[e]; // 增加一条它的反向边
- next[e] = first[u[e]]; // 插入链表
- first[u[e]] = e;
- next[e+m] =first[u[e+m]]; // 反向边插入链表
- first[u[e+m]] = e+m;
- }
- }
- void Dijkstra(int src){
- memset(vis, 0, sizeof(vis));
- for(int i=1; i<=n; ++i) d[i] = INF;
- d[src] = 0;
- q.push(make_pair(d[src], src));
- while(!q.empty()){
- pii u = q.top(); q.pop();
- int x = u.second;
- if(vis[x]) continue;
- vis[x] = true;
- for(int e = first[x]; e!=-1; e=next[e]) if(d[v[e]] > d[x]+w[e]){
- d[v[e]] = d[x] + w[e];
- q.push(make_pair(d[v[e]], v[e]));
- }
- }
- }
- int main(){
- int a,b,c;
- while(~scanf("%d%d",&n,&m)&&n+m){
- read_graph();
- Dijkstra(1);
- printf("%d\n", d[n]);
- }
- return 0;
- }
3. Dijkstra+邻接表(用vecor实现)+优先队列优化
[cpp] view plaincopy
- #include<cstdio>
- #include<cstring>
- #include<utility>
- #include<queue>
- #include<vector>
- using namespace std;
- const int N=105;
- const int INF=9999999;
- typedef pair<int,int>pii;
- vector<pii>G[N];
- priority_queue<pii, vector<pii>, greater<pii> >q;
- int d[N], first[N], u[N], v[N], w[N], next[N],n,m;
- bool vis[N];
- // 无向图的输入,注意没输入的一条边要看作是两条边
- void read_graph(){
- for(int i=1; i<=n; ++i)
- G[i].clear();
- int a,b,c;
- for(int i=1; i<=m; ++i){
- scanf("%d%d%d",&a,&b,&c);
- G[a].push_back(make_pair(b,c));
- G[b].push_back(make_pair(a,c));
- }
- }
- void Dijkstra(int src){
- memset(vis, 0, sizeof(vis));
- for(int i=1; i<=n; ++i) d[i] = INF;
- d[src] = 0;
- q.push(make_pair(d[src], src));
- while(!q.empty()){
- pii t = q.top(); q.pop();
- int u = t.second;
- if(vis[u]) continue;
- vis[u] = true;
- for(int v=0; v<G[u].size(); ++v)if(d[G[u][v].first] > d[u]+G[u][v].second){
- d[G[u][v].first] = d[u]+G[u][v].second;
- q.push(make_pair(d[G[u][v].first], G[u][v].first));
- }
- }
- }
- int main(){
- int a,b,c;
- while(~scanf("%d%d",&n,&m)&&n+m){
- read_graph();
- Dijkstra(1);
- printf("%d\n", d[n]);
- }
- return 0;
- }
二,Bellman-Ford算法
[cpp] view plaincopy
- #include<cstdio>
- #include<cstring>
- #include<utility>
- #include<queue>
- using namespace std;
- const int N=20005;
- const int INF=9999999;
- int n, m, u[N],v[N],w[N], d[N];
- // 无向图的输入,注意每输入的一条边要看作是两条边
- inline void read_graph(){
- for(int e=1; e<=m; ++e){
- scanf("%d%d%d",&u[e],&v[e],&w[e]);
- }
- }
- inline void Bellman_Ford(int src){
- for(int i=1; i<=n; ++i) d[i] = INF;
- d[src] = 0;
- for(int k=0; k<n-1; ++k){
- for(int i=1; i<=m; ++i){
- int x=u[i], y=v[i];
- if(d[x] < INF){
- if(d[y]>d[x]+w[i])
- d[y] = d[x]+w[i];
- }
- if(d[y] < INF){
- if(d[x]>d[y]+w[i])
- d[x] = d[y]+w[i];
- }
- }
- }
- }
- int main(){
- int a,b,c;
- while(~scanf("%d%d",&n,&m)&&n+m){
- read_graph();
- Bellman_Ford(1);
- printf("%d\n", d[n]);
- }
- return 0;
- }
三,SPFA
邻接表实现
[cpp] view plaincopy
- #include<cstdio>
- #include<cstring>
- #include<utility>
- #include<queue>
- using namespace std;
- const int N=20005;
- const int INF=2147483646>>1;
- int n, m, first[N],next[N],u[N],v[N],w[N], d[N];
- bool vis[N];
- queue<int>q;
- inline void read_graph(){
- memset(first, -1, sizeof(first));
- for(int e=1; e<=m; ++e){
- scanf("%d%d%d",&u[e],&v[e],&w[e]);
- u[e+m]=v[e], v[e+m]=u[e], w[e+m]=w[e];
- next[e] = first[u[e]];
- first[u[e]] = e;
- next[e+m] = first[u[e+m]];
- first[u[e+m]] = e+m;
- }
- }
- void SPFA(int src){
- memset(vis, 0, sizeof(vis));
- for(int i=1; i<=n; ++i) d[i] = INF;
- d[src] = 0;
- vis[src] = true;
- q.push(src);
- while(!q.empty()){
- int x = q.front(); q.pop();
- vis[x] = false;
- for(int e=first[x]; e!=-1; e=next[e]){
- if(d[x]+w[e] < d[v[e]]){
- d[v[e]] = d[x]+w[e];
- if(!vis[v[e]]){
- vis[v[e]] = true;
- q.push(v[e]);
- }
- }
- }
- }
- }
- int main(){
- int a,b,c;
- while(~scanf("%d%d",&n,&m)&&n+m){
- read_graph();
- SPFA(1);
- printf("%d\n", d[n]);
- }
- return 0;
- }
四, Floyd算法
[cpp] view plaincopy
- #include<cstdio>
- #include<cstring>
- #include<utility>
- #include<queue>
- using namespace std;
- const int N=105;
- const int INF=2147483646;
- int n, m, d[N][N];
- inline void read_graph(){
- for(int i=1; i<=n; ++i){
- d[i][i] = INF;
- for(int j=i+1; j<=n; ++j)
- d[i][j]=d[j][i]=INF;
- }
- int a,b,c;
- for(int e=1; e<=m; ++e){
- scanf("%d%d%d",&a,&b,&c);
- d[a][b]=d[b][a]=c;
- }
- }
- inline void Floyd(int src){
- for(int k=1; k<=n; ++k){
- for(int i=1; i<=n; ++i){
- for(int j=1; j<=n; ++j)
- if(d[i][k]<INF && d[k][j]<INF){ //防止溢出
- d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
- }
- }
- }
- }
- int main(){
- int a,b,c;
- while(~scanf("%d%d",&n,&m)&&n+m){
- read_graph();
- Floyd(1);
- printf("%d\n", d[1][n]);
- }
- return 0;
- }