- Recursive sequence
题意:给定起始的两个数a,b,求第n个数%mod
思路:
第一眼看出来是矩阵快速幂,不过当时没推出来(其实推了一半把自己给否定了)
正解是,根据二项式定理,对于f(n)=f(n-1)+2f(n-2)+n^4可以转换为
f(n)=f(n-1)+2f(n-2)+c(4,0)(n-1)^4+c(4,1)(n-1)^3+c(4,2)(n-1)^2+c(4,3)(n-1)+c(4,4) (#1)
那么,对于下一项:
f(n+1)=f(n)+2f(n-1)+c(4,0)(n)^4+c(4,1)(n)^3+c(4,2)(n)^2+c(4,3)(n)+c(4,4) (#2)
可以发现#2的f(n),f(n-1),n^4,n^3,n^2,n,1都可以通过#1构造出来,那么根据倍数关系构造相关的矩阵即可。
code:
#include <bits/stdc++.h>
using namespace std;typedef long long ll;
const ll mod = 2147493647ll;struct Matirx{int r, c;ll mat[10][10];
};Matirx Mul(Matirx a, Matirx b){Matirx ret;ret.r = a.r;ret.c = b.c;for(int i = 0; i < ret.r; i++){for(int j = 0; j < ret.c; j++){ret.mat[i][j] = 0;for(int k = 0; k < a.c; k++){ret.mat[i][j] += a.mat[i][k]*b.mat[k][j];ret.mat[i][j] %= mod;}}}return ret;
}Matirx Quick_pow(Matirx a, ll n){Matirx ret;ret.r = ret.c = 7;memset(ret.mat, 0, sizeof(ret.mat));for(int i = 0; i < 7; i++) ret.mat[i][i] = 1;while(n){if(n&1) ret = Mul(ret, a);a = Mul(a, a);n >>= 1;}return ret;
}void build(Matirx& t){t.r = t.c = 7;t.mat[0][0] = 1, t.mat[0][1] = 4, t.mat[0][2] = 6, t.mat[0][3] = 4, t.mat[0][4] = 1, t.mat[0][5] = 0, t.mat[0][6] = 0;//1t.mat[1][0] = 0, t.mat[1][1] = 1, t.mat[1][2] = 3, t.mat[1][3] = 3, t.mat[1][4] = 1, t.mat[1][5] = 0, t.mat[1][6] = 0;//2t.mat[2][0] = 0, t.mat[2][1] = 0, t.mat[2][2] = 1, t.mat[2][3] = 2, t.mat[2][4] = 1, t.mat[2][5] = 0, t.mat[2][6] = 0;//2t.mat[3][0] = 0, t.mat[3][1] = 0, t.mat[3][2] = 0, t.mat[3][3] = 1, t.mat[3][4] = 1, t.mat[3][5] = 0, t.mat[3][6] = 0;//4t.mat[4][0] = 0, t.mat[4][1] = 0, t.mat[4][2] = 0, t.mat[4][3] = 0, t.mat[4][4] = 1, t.mat[4][5] = 0, t.mat[4][6] = 0;//5t.mat[5][0] = 0, t.mat[5][1] = 0, t.mat[5][2] = 0, t.mat[5][3] = 0, t.mat[5][4] = 0, t.mat[5][5] = 0, t.mat[5][6] = 1;//6t.mat[6][0] = 1, t.mat[6][1] = 4, t.mat[6][2] = 6, t.mat[6][3] = 4, t.mat[6][4] = 1, t.mat[6][5] = 2, t.mat[6][6] = 1;//7
}int main(){int T;scanf("%d", &T);ll N, a, b;while(T--){scanf("%I64d%I64d%I64d", &N, &a, &b);if(N == 1) printf("%I64d\n", a%mod);else if(N == 2) printf("%I64d\n", b%mod);else{Matirx temp;build(temp);Matirx ret = Quick_pow(temp, N-2);temp.r = 7;temp.c = 1;temp.mat[0][0] = 16,temp.mat[1][0] = 8,temp.mat[2][0] = 4,temp.mat[3][0] = 2,temp.mat[4][0] = 1,temp.mat[5][0] = a%mod, temp.mat[6][0] = b%mod;ret = Mul(ret, temp);printf("%I64d\n", ret.mat[6][0]);}}return 0;
}