场景:从样本集中采样80%用于训练,20%用于验证。
参考代码如下:
package com.gddx;
import java.io.File;
import java.util.Map;
import libsvm.LibSVM;
import net.sf.javaml.classification.Classifier;
import net.sf.javaml.classification.evaluation.EvaluateDataset;
import net.sf.javaml.classification.evaluation.PerformanceMeasure;
import net.sf.javaml.core.Dataset;
import net.sf.javaml.sampling.Sampling;
import net.sf.javaml.tools.data.FileHandler;
import be.abeel.util.Pair;
/**
* Sample program illustrating how to use sampling.
*
* @author Thomas Abeel
*
*/
public class TutorialSampling {
public static void main(String[] args) throws Exception {
Dataset data = FileHandler.loadDataset(new File("D:\\tmp\\javaml-0.1.7-src\\UCI-small\\iris\\iris.data"), 4, ",");
Sampling s = Sampling.SubSampling;
Pair datass = s.sample(data, (int) (data.size() * 0.8));
System.out.println(datass.x().instance(0));//训练集
System.out.println(datass.y().instance(0));//测试集
Classifier c = new LibSVM();
c.buildClassifier(datass.x());
Map pms = EvaluateDataset.testDataset(c, datass.y());
System.out.println(pms);
/*
for (int i = 0; i < 5; i++) {
Pair datas = s.sample(data, (int) (data.size() * 0.8), i);
Classifier c = new LibSVM();
c.buildClassifier(datas.x());
Map pms = EvaluateDataset.testDataset(c, datas.y());
System.out.println(pms);
}*/
}
}