Java中的异常栈轨迹和异常链

Java中允许对异常进行再次抛出,以提交给上一层进行处理,最为明显的例子为Java的常规异常。

常规异常:有Java所定义的异常,不需要异常声明,在未被try-catch的情况下,会被默认上报到main()方法。

Example:

public class TestException {TestException(int i) throws ExceptionA,ExceptionB{int a[]={0,}; a[1]=1;}
}

当从main()方法中调用TestException类的构造函数的时候,会得到以下的异常提示,从中可以看出异常的冒泡机制(这是一个栈信息)。

异常的冒泡上传机制:当一个异常对象产生了以后,其会按照调用层次(一般是方法的调用层次)进行冒泡,直到被try-catch处理,或上报至main()方法,有编译器进行提示。

Example:

firstThrow()提示错误的原因为, firstThrow()的函数声明中包括了MyException的异常声明,而secondThrow()中调用了firstThrow()却未对可能抛出的异常对象提供任何处理方案,这是编译器所不能允许发生的事情。(这也是为了保证底层异常对象在冒泡过程中,能得到合适的处理和重视!)

注意此截图中,MyEclipse提供了两种方式帮助fix这个程序这两种方式常用的异常应对手段

1、本方法不给予处理,将异常上报给上一层。

 1 public class TestExceptionChain {
 2     void firstThrow() throws MyException
 3     {
 4         print("Oringinally creat a MyException and throw it out");
 5         throw new MyException();
 6         
 7     }
 8     void secondThrow() throws MyException
 9     {
10         firstThrow();
11     }
12     TestExceptionChain() throws MyException{
13         secondThrow();
14     }
15 }
 1 public static void main(String[] args) {
 2         try{
 3          
 4             TestExceptionChain testExceptionChain=new TestExceptionChain();
 5         }
 6         catch(MyException e)
 7         {
 8             e.printStackTrace();
 9             print("Catch a my exception!");
10         }
11 
12     }

控制台的输出为:

从异常栈的记录信息可以发现,与代码相对应的异常抛出机制和次序:

firstThrow()产生MyException对象->异常冒泡至调用其的secondThrow()->异常冒泡至调用secondThrow()的TestExceptionChain的构造方法->冒泡至printtry的main()方法。

注意到:异常对象一直被抛出,直至在printtry的mian()方法中被try-catch捕获!

 

2、try-catch方式,捕捉上报的异常,而后进行相应处理或抛出另一异常。

2、1捕获异常后,进行相应处理。

Example:

 1 public class TestExceptionChain {
 2     void firstThrow() throws MyException
 3     {
 4         print("Oringinally creat a MyException and throw it out");
 5         throw new MyException();
 6     }
 7     void secondThrow()
 8     {
 9         try
10         {
11         firstThrow();
12         }
13         catch (MyException e)
14         {
15             print("I have just caught a MyExcepton,but i want to do nothing for it");
16             e.printStackTrace();
17         }
18     }
19     TestExceptionChain(){
20         secondThrow();
21     }

从图中可以发现,异常在secondThrow() 中被try-catch模块捕获,并执行了相应的处理操作,所以其函数声明中无需添加异常声明,异常不会被上报

故mian()方法被改写成了以下的代码:

1 TestExceptionChain testExceptionChain=new TestExceptionChain();

注意此处异常栈的信息,表示的是异常产生的层次信息,并非异常信息的上报层次,因为其已经在secondThorow()中被捕获处理。

 

2.2 捕获异常后,抛出另一个异常。

Example:

 1 public class TestExceptionChain {
 2     void firstThrow() throws MyException
 3     {
 4         print("Oringinally creat a MyException and throw it out");
 5         throw new MyException();
 6     }
 7     void secondThrow() throws YouException
 8     {
 9         try
10         {
11         firstThrow();
12         }
13         catch (MyException e)
14         {
15             print("I have just caught a MyExcepton,but i want to create a YouException and throw it out");
16             e.printStackTrace();
17             throw new YouException();
18         }
19     }
20     TestExceptionChain() throws YouException{
21         secondThrow();
22     }
23 }
24 class MyException extends Exception{}
25 class YouException extends Exception{}

从异常栈信息中可以发现,新抛出的YouException对象是从secondThrow()中开始的。

 

*Java中还提供了fillInStackTrace()方法,用于对捕获的异常的栈信息进行重写。

Example:

 1 try{
 2          
 3             TestExceptionChain testExceptionChain=new TestExceptionChain();
 4         }
 5         catch(YouException e)
 6         {
 7             print("Catch a YouException!");
 8             e.fillInStackTrace();
 9             e.printStackTrace();
10             
11         }

 由于使用了fillInstack()方法,关于YouException的异常信息被重写,从其被从写处重新记录!

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/airwindow/archive/2012/06/26/2564123.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/379572.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

同步---信号量

信号量1 信号量2 驱动程序和测试程序3 内核的具体实现总结1 信号量 Linux中的信号量是一种睡眠锁。如果有一个任务试图获得一个已经被占用的信号量时,信号量会将其放到一个等待队列,然后让其睡眠,这时处理器去执行其他代码。当持有信号量的进…

算法---KMP算法

字符串1 KMP算法状态机概述构建状态转移1 KMP算法 原文链接:https://zhuanlan.zhihu.com/p/83334559 先约定,本文用pat表示模式串,长度为M,txt表示文本串,长度为N,KMP算法是在txt中查找子串pat&#xff0…

文件上传 带进度条(多种风格)

文件上传 带进度条 多种风格 非常漂亮&#xff01; 友好的提示 以及上传验证&#xff01; 部分代码&#xff1a; <form id"form1" runat"server"><asp:ScriptManager ID"scriptManager" runat"server" EnablePageMethods&quo…

同步---自旋锁

1 自旋锁的基本概念 自旋锁最多只能被一个可执行线程持有&#xff0c;如果一个执行线程试图获得一个已经被使用的自旋锁&#xff0c;那么该线程就会一直进行自旋&#xff0c;等待锁重新可用。在任何时刻&#xff0c;自旋锁都可以防止多余一个的执行线程同时进入临界区。 Linu…

实习日志----4.播放时段参数设置

由于客户在下发广告时&#xff0c;一则广告可在多个时段播放&#xff0c;这就需要设置多个播放时段的参数。 但在这种情况下&#xff0c;我并不知道用户每次需要下发几个时段&#xff0c;所以前台不能设定死。 因此我要实现这么一个功能&#xff0c;让用户根据自己的需要来动态…

linux系统编程---线程总结

线程总结1 线程的实现线程创建线程退出线程等待线程清理2 线程的属性线程的分离线程的栈地址线程栈大小线程的调度策略线程优先级3 线程的同步互斥锁读写锁条件变量信号量线程是系统独立调度和分配的基本单位。同一进程中的多个线程将共享该进程中的全部系统资源&#xff0c;例…

如何给Linux操作系统(CentOS 7为例)云服务器配置环境等一系列东西

1.首先&#xff0c;你得去购买一个云服务器&#xff08;这里以阿里云学生服务器为例&#xff0c;学生必须实名认证&#xff09; 打开阿里云&#xff0c;搜索学生服务器点击进入即可 公网ip为连接云服务器的主机 自定义密码为连接云服务器是需要输入的密码 购买即可 点击云服…

Linux系统编程---I/O多路复用

文章目录1 什么是IO多路复用2 解决什么问题说在前面I/O模型阻塞I/O非阻塞I/OIO多路复用信号驱动IO异步IO3 目前有哪些IO多路复用的方案解决方案总览常见软件的IO多路复用方案4 具体怎么用selectpollepolllevel-triggered and edge-triggered状态变化通知(edge-triggered)模式下…

c#中textbox属性_C#.Net中的TextBox.MaxLength属性与示例

c#中textbox属性Here we are demonstrating use of MaxLength property of TextBox. 在这里&#xff0c;我们演示了TextBox的MaxLength属性的使用。 MaxLength property of TextBox is used to set maximum number of character that we can input into a TextBox. Limit of M…

IIS7 MVC网站生成、发布

(1)生成。 确保System.Web.Mvc.dll在bin目录下 (2)发布网站到文件系统 (3)在IIS中为网站添加应用程序池&#xff08;一个虚拟目录&#xff0c;一个应用程序池&#xff09; (4)添加在默认网站下添加虚拟目录 &#xff08;5&#xff09;转换为应用程序 至此&#xff0c;部署完毕 …

C语言多维数组

文章目录多维数组数组名下标指向数组的指针作为函数参数的多维数组指针数组小结多维数组 如果某个数组的维数超过1&#xff0c;它就被称为多维数组&#xff0c;例如&#xff0c;下面这个声明&#xff1a; int matrix[6][10]创建了一个包含60个元素的矩阵。但是&#xff0c;它…

fwrite函数的用法示例_C语言中的fwrite()函数(带有示例)

fwrite函数的用法示例C中的fwrite()函数 (fwrite() function in C) Prototype: 原型&#xff1a; size_t fwrite(void *buffer, size_t length, size_t count, FILE *filename);Parameters: 参数&#xff1a; void *buffer, size_t length, size_t count, FILE *filenameRetu…

伙伴算法、slab机制、内存管理函数

文章目录1 伙伴算法页框操作alloc_pages()2 slabslab机制要解决的问题使用高速缓存3 内存管理函数kmallockzallocvmallocvzalloc区别参考文章内核使用struct page结构体描述每个物理页&#xff0c;也叫页框。内核在很多情况下&#xff0c;需要申请连续的页框&#xff0c;而且数…

Javaweb---监听器

1.什么是监听器 监听器就是监听某个对象的状态变化的组件。 事件源&#xff1a;被监听的对象 ----- 三个域对象 request session servletContext 监听器&#xff1a;监听事件源对象 事件源对象的状态的变化都会触发监听器 ---- 62 注册监听器&#xff1a;将监听器与事件源进行…

Linux中的Ramdisk和Initrd

Ramdisk简介先简单介绍一下ramdisk&#xff0c;Ramdisk是虚拟于RAM中的盘(Disk)。对于用户来说&#xff0c;能把RAM disk和通常的硬盘分区&#xff08;如/dev/hda1&#xff09;同等对待来使用&#xff0c;例如&#xff1a;redice # mkfs.ext2 /dev/ram0mke2fs 1.38 (30-Jun-200…

slab下kmalloc内核函数实现

文章目录kmalloc的整体实现获取高速缓存高速缓存获取index总结https://blog.csdn.net/qq_41683305/article/details/124554490&#xff0c;在这篇文章中&#xff0c;我们介绍了伙伴算法、slab机制和常见的内存管理函数&#xff0c;接下来&#xff0c;我们看看kmalloc内核函数的…

标题:三羊献瑞

标题&#xff1a;观察下面的加法算式&#xff1a; 其中&#xff0c;相同的汉字代表相同的数字&#xff0c;不同的汉字代表不同的数字。 请你填写“三羊献瑞”所代表的4位数字&#xff08;答案唯一&#xff09;&#xff0c;不要填写任何多余内容。 思路分析&#xff1a; 首先…

进程虚拟地址管理

文章目录1 地址分布实际使用中的内存区域2 进程的虚拟地址描述用户空间mmap线程之间共享内存地址的实现机制1 地址分布 现在采用虚拟内存的操作系统通常都使用平坦地址空间&#xff0c;平坦地址空间是指地址空间范围是一个独立的连续空间&#xff08;比如&#xff0c;地址从0扩…

标题:加法变乘法

标题&#xff1a;我们都知道&#xff1a;123 … 49 1225 现在要求你把其中两个不相邻的加号变成乘号&#xff0c;使得结果为2015 比如&#xff1a; 123…10*1112…27*2829…49 2015 就是符合要求的答案。 请你寻找另外一个可能的答案&#xff0c;并把位置靠前的那个乘号左…

【翻译】eXpressAppFramework QuickStart 业务模型设计(四)—— 实现自定义业务类...

这一讲&#xff0c;你将学到如何从头开始实现业务类。为此&#xff0c;将要实现Department和Position业务类。这些类将被应用到之前实现的Contact类中。你将学到引用对象自动生成用户界面的基本要素。 在此之前&#xff0c;我建议你去阅读一下 【翻译】eXpressAppFramework Qui…