解析linux根文件系统的挂载过程

------------------------------------------
本文系本站原创,欢迎转载!
转载请注明出处:http://ericxiao.cublog.cn/
------------------------------------------
一:前言
前段时间在编译kernel的时候发现rootfs挂载不上。相同的root选项设置旧版的image却可以。为了彻底解决这个问题。研究了一下rootfs的挂载过程。特总结如下,希望能给这部份知识点比较迷茫的朋友一点帮助。
二:rootfs的种类
总的来说,rootfs分为两种:虚拟rootfs和真实rootfs.现在kernel的发展趋势是将更多的功能放到用户空间完成。以保持内核的精简。虚拟rootfs也是各linux发行厂商普遍采用的一种方式。可以将一部份的初始化工作放在虚拟的rootfs里完成。然后切换到真实的文件系统.
在虚拟rootfs的发展过程中。又有以下几个版本:
initramfs:
 Initramfs是在 kernel 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核将这个cpio包解开,并且将其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。这种这种方式的rootfs是包含在kernel image之中的.
 

cpio-initrd: cpio格式的rootfs

image-initrd:传统格式的rootfs
关于这两种虚拟文件系统的制作请自行参阅其它资料
 
三:rootfs文件系统的挂载过程
这里说的rootfs不同于上面分析的rootfs。这里指的是系统初始化时的根结点。即/结点。它是其于内存的rootfs文件系统。这部份之前在<< linux启动过程分析>>和文件系统中已经分析过。为了知识的连贯性这里再重复一次。
Start_kernel()àmnt_init():

void __init mnt_init(void)

{
         ……
         ……
         init_rootfs();
         init_mount_tree();
}
 
Init_rootfs的代码如下:

int __init init_rootfs(void)

{
         int err;
 

         err = bdi_init(&ramfs_backing_dev_info);

         if (err)
                   return err;
 
         err = register_filesystem(&rootfs_fs_type);
         if (err)
                   bdi_destroy(&ramfs_backing_dev_info);
 
         return err;
}
这个函数很简单。就是注册了rootfs的文件系统.
init_mount_tree()代码如下:

static void __init init_mount_tree(void)

{
         struct vfsmount *mnt;
         struct mnt_namespace *ns;
         struct path root;
 

         mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);

         if (IS_ERR(mnt))

                   panic("Can't create rootfs");

         ns = kmalloc(sizeof(*ns), GFP_KERNEL);
         if (!ns)

                   panic("Can't allocate initial namespace");

         atomic_set(&ns->count, 1);
         INIT_LIST_HEAD(&ns->list);
         init_waitqueue_head(&ns->poll);
         ns->event = 0;

         list_add(&mnt->mnt_list, &ns->list);

         ns->root = mnt;
         mnt->mnt_ns = ns;
 
         init_task.nsproxy->mnt_ns = ns;
         get_mnt_ns(ns);
 
         root.mnt = ns->root;
         root.dentry = ns->root->mnt_root;
 
         set_fs_pwd(current->fs, &root);
         set_fs_root(current->fs, &root);
}
在这里,将rootfs文件系统挂载。它的挂载点默认为”/”.最后切换进程的根目录和当前目录为”/”.这也就是根目录的由来。不过这里只是初始化。等挂载完具体的文件系统之后,一般都会将根目录切换到具体的文件系统。所以在系统启动之后,用mount命令是看不到rootfs的挂载信息的.
 
四:虚拟文件系统的挂载
根目录已经挂上去了,可以挂载具体的文件系统了.
在start_kernel()àrest_init()àkernel_init():

static int __init kernel_init(void * unused)

{
         ……
         ……
         do_basic_setup();

if (!ramdisk_execute_command)

                   ramdisk_execute_command = "/init";

 

         if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {

                   ramdisk_execute_command = NULL;

                   prepare_namespace();
         }
 
         /*

          * Ok, we have completed the initial bootup, and

          * we're essentially up and running. Get rid of the

          * initmem segments and start the user-mode stuff..

          */
         init_post();
         return 0;
}
do_basic_setup()是一个很关键的函数,所有直接编译在kernel中的模块都是由它启动的。代码片段如下:

static void __init do_basic_setup(void)

{
         /* drivers will send hotplug events */
         init_workqueues();
         usermodehelper_init();
         driver_init();
         init_irq_proc();
         do_initcalls();
}
Do_initcalls()用来启动所有在__initcall_start和__initcall_end段的函数,而静态编译进内核的modules也会将其入口放置在这段区间里。
跟根文件系统相关的初始化函数都会由rootfs_initcall()所引用。注意到有以下初始化函数:
rootfs_initcall(populate_rootfs);
也就是说会在系统初始化的时候会调用populate_rootfs进行初始化。代码如下:

static int __init populate_rootfs(void)

{
         char *err = unpack_to_rootfs(__initramfs_start,
                             __initramfs_end - __initramfs_start, 0);
         if (err)
                   panic(err);
         if (initrd_start) {

#ifdef CONFIG_BLK_DEV_RAM

                   int fd;

                   printk(KERN_INFO "checking if image is initramfs...");

                   err = unpack_to_rootfs((char *)initrd_start,

                            initrd_end - initrd_start, 1);

                   if (!err) {

                            printk(" it is/n");

                            unpack_to_rootfs((char *)initrd_start,

                                     initrd_end - initrd_start, 0);

                            free_initrd();
                            return 0;
                   }

                   printk("it isn't (%s); looks like an initrd/n", err);

                   fd = sys_open("/initrd.image", O_WRONLY|O_CREAT, 0700);

                   if (fd >= 0) {

                            sys_write(fd, (char *)initrd_start,

                                               initrd_end - initrd_start);

                            sys_close(fd);
                            free_initrd();
                   }
#else

                   printk(KERN_INFO "Unpacking initramfs...");

                   err = unpack_to_rootfs((char *)initrd_start,

                            initrd_end - initrd_start, 0);

                   if (err)
                            panic(err);
                   printk(" done/n");
                   free_initrd();
#endif
         }
         return 0;
}
unpack_to_rootfs:顾名思义就是解压包,并将其释放至rootfs。它实际上有两个功能,一个是释放包,一个是查看包,看其是否属于cpio结构的包。功能选择是根据最后的一个参数来区分的.
在这个函数里,对应我们之前分析的三种虚拟根文件系统的情况。一种是跟kernel融为一体的initramfs.在编译kernel的时候,通过链接脚本将其存放在__initramfs_start至__initramfs_end的区域。这种情况下,直接调用unpack_to_rootfs将其释放到根目录.如果不是属于这种形式的。也就是__initramfs_start和__initramfs_end的值相等,长度为零。不会做任何处理。退出.
 
对应后两种情况。从代码中看到,必须要配制CONFIG_BLK_DEV_RAM才会支持image-initrd。否则全当成cpio-initrd的形式处理。
对于是cpio-initrd的情况。直接将其释放到根目录。对于是image-initrd的情况。将其释放到/initrd.image.最后将initrd内存区域归入伙伴系统。这段内存就可以由操作系统来做其它的用途了。
接下来,内核对这几种情况又是怎么处理的呢?不要着急。往下看:
 
回到kernel_init()这个函数:

static int __init kernel_init(void * unused)

{
         …….
         …….
         do_basic_setup();
 
         /*

          * check if there is an early userspace init.  If yes, let it do all

          * the work
          */
 
         if (!ramdisk_execute_command)

                   ramdisk_execute_command = "/init";

 

         if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {

                   ramdisk_execute_command = NULL;

                   prepare_namespace();
         }
 
         /*

          * Ok, we have completed the initial bootup, and

          * we're essentially up and running. Get rid of the

          * initmem segments and start the user-mode stuff..

          */
         init_post();
         return 0;
}
ramdisk_execute_command:在kernel解析引导参数的时候使用。如果用户指定了init文件路径,即使用了“init=”,就会将这个参数值存放到这里。
如果没有指定init文件路径。默认为/init
对应于前面一段的分析,我们知道,对于initramdisk和cpio-initrd的情况,都会将虚拟根文件系统释放到根目录。如果这些虚拟文件系统里有/init这个文件。就会转入到init_post()。
Init_post()代码如下:

static int noinline init_post(void)

{
         free_initmem();
         unlock_kernel();
         mark_rodata_ro();
         system_state = SYSTEM_RUNNING;
         numa_default_policy();
 

         if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)

                   printk(KERN_WARNING "Warning: unable to open an initial console./n");

 
         (void) sys_dup(0);
         (void) sys_dup(0);
 
         if (ramdisk_execute_command) {
                   run_init_process(ramdisk_execute_command);

                   printk(KERN_WARNING "Failed to execute %s/n",

                                     ramdisk_execute_command);
         }
 
         /*
          * We try each of these until one succeeds.
          *

          * The Bourne shell can be used instead of init if we are

          * trying to recover a really broken machine.
          */
         if (execute_command) {
                   run_init_process(execute_command);

                   printk(KERN_WARNING "Failed to execute %s.  Attempting "

                                               "defaults.../n", execute_command);

         }
         run_init_process("/sbin/init");
         run_init_process("/etc/init");
         run_init_process("/bin/init");
         run_init_process("/bin/sh");
 
         panic("No init found.  Try passing init= option to kernel.");
}
从代码中可以看中,会依次执行指定的init文件,如果失败,就会执行/sbin/init, /etc/init,, /bin/init,/bin/sh
注意的是,run_init_process在调用相应程序运行的时候,用的是kernel_execve。也就是说调用进程会替换当前进程。只要上述任意一个文件调用成功,就不会返回到这个函数。如果上面几个文件都无法执行。打印出没有找到init文件的错误。
对于image-hdr或者是虚拟文件系统中没有包含 /init的情况,会由prepare_namespace()处理。代码如下:

void __init prepare_namespace(void)

{
         int is_floppy;
 
         if (root_delay) {

                   printk(KERN_INFO "Waiting %dsec before mounting root device.../n",

                          root_delay);
                   ssleep(root_delay);
         }
 

         /* wait for the known devices to complete their probing */

         while (driver_probe_done() != 0)
                   msleep(100);
 
         //mtd的处理
         md_run_setup();
 
         if (saved_root_name[0]) {

                   root_device_name = saved_root_name;

                   if (!strncmp(root_device_name, "mtd", 3)) {

                            mount_block_root(root_device_name, root_mountflags);

                            goto out;
                   }

                   ROOT_DEV = name_to_dev_t(root_device_name);

                   if (strncmp(root_device_name, "/dev/", 5) == 0)

                            root_device_name += 5;

         }
 
         if (initrd_load())
                   goto out;
 

         /* wait for any asynchronous scanning to complete */

         if ((ROOT_DEV == 0) && root_wait) {

                   printk(KERN_INFO "Waiting for root device %s.../n",

                            saved_root_name);

                   while (driver_probe_done() != 0 ||

                            (ROOT_DEV = name_to_dev_t(saved_root_name)) == 0)

                            msleep(100);
         }
 

         is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;

 

         if (is_floppy && rd_doload && rd_load_disk(0))

                   ROOT_DEV = Root_RAM0;
 
         mount_root();
out:

         sys_mount(".", "/", NULL, MS_MOVE, NULL);

         sys_chroot(".");
}
这里有几个比较有意思的处理,首先用户可以用root=来指定根文件系统。它的值保存在saved_root_name中。如果用户指定了以mtd开始的字串做为它的根文件系统。就会直接去挂载。这个文件是mtdblock的设备文件。
否则将设备结点文件转换为ROOT_DEV即设备节点号
然后,转向initrd_load()执行initrd预处理后,再将具体的根文件系统挂载。
注意到,在这个函数末尾。会调用sys_mount()来移动当前文件系统挂载点到”/”目录下。然后将根目录切换到当前目录。这样,根文件系统的挂载点就成为了我们在用户空间所看到的”/”了.
对于其它根文件系统的情况,会先经过initrd的处理。即

int __init initrd_load(void)

{
         if (mount_initrd) {

                   create_dev("/dev/ram", Root_RAM0);

                   /*

                    * Load the initrd data into /dev/ram0. Execute it as initrd

                    * unless /dev/ram0 is supposed to be our actual root device,

                    * in that case the ram disk is just set up here, and gets

                    * mounted in the normal path.
                    */

                   if (rd_load_image("/initrd.image") && ROOT_DEV != Root_RAM0) {

                            sys_unlink("/initrd.image");
                            handle_initrd();
                            return 1;
                   }
         }
         sys_unlink("/initrd.image");
         return 0;
}
建立一个ROOT_RAM)的设备节点,并将/initrd/.image释放到这个节点中,/initrd.image的内容,就是我们之前分析的image-initrd。
如果根文件设备号不是ROOT_RAM0( 用户指定的根文件系统不是/dev/ram0就会转入到handle_initrd()
如果当前根文件系统是/dev/ram0.将其直接挂载就好了。
 
handle_initrd()代码如下:

static void __init handle_initrd(void)

{
         int error;
         int pid;
 

         real_root_dev = new_encode_dev(ROOT_DEV);

         create_dev("/dev/root.old", Root_RAM0);

         /* mount initrd on rootfs' /root */

         mount_block_root("/dev/root.old", root_mountflags & ~MS_RDONLY);

         sys_mkdir("/old", 0700);

         root_fd = sys_open("/", 0, 0);

         old_fd = sys_open("/old", 0, 0);

         /* move initrd over / and chdir/chroot in initrd root */

         sys_chdir("/root");

         sys_mount(".", "/", NULL, MS_MOVE, NULL);

         sys_chroot(".");
 
         /*

          * In case that a resume from disk is carried out by linuxrc or one of

          * its children, we need to tell the freezer not to wait for us.

          */
         current->flags |= PF_FREEZER_SKIP;
 

         pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD);

         if (pid > 0)

                   while (pid != sys_wait4(-1, NULL, 0, NULL))

                            yield();
 

         current->flags &= ~PF_FREEZER_SKIP;

 
         /* move initrd to rootfs' /old */
         sys_fchdir(old_fd);

         sys_mount("/", ".", NULL, MS_MOVE, NULL);

         /* switch root and cwd back to / of rootfs */

         sys_fchdir(root_fd);
         sys_chroot(".");
         sys_close(old_fd);
         sys_close(root_fd);
 

         if (new_decode_dev(real_root_dev) == Root_RAM0) {

                   sys_chdir("/old");
                   return;
         }
 
         ROOT_DEV = new_decode_dev(real_root_dev);
         mount_root();
 

         printk(KERN_NOTICE "Trying to move old root to /initrd ... ");

         error = sys_mount("/old", "/root/initrd", NULL, MS_MOVE, NULL);

         if (!error)
                   printk("okay/n");
         else {

                   int fd = sys_open("/dev/root.old", O_RDWR, 0);

                   if (error == -ENOENT)

                            printk("/initrd does not exist. Ignored./n");

                   else
                            printk("failed/n");

                   printk(KERN_NOTICE "Unmounting old root/n");

                   sys_umount("/old", MNT_DETACH);

                   printk(KERN_NOTICE "Trying to free ramdisk memory ... ");

                   if (fd < 0) {
                            error = fd;
                   } else {

                            error = sys_ioctl(fd, BLKFLSBUF, 0);

                            sys_close(fd);
                   }

                   printk(!error ? "okay/n" : "failed/n");

         }
}
先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.
到这里。文件系统挂载的全部内容就分析完了.
 
五:小结
在本小节里。分析了根文件系统的挂载流程。并对几个虚拟根文件系统的情况做了详细的分析。理解这部份,对我们构建linux嵌入式开发系统是很有帮助的.
 
PS:参考资料:ibm技术论坛的<<Linux2.6 内核的 Initrd 机制解析>>                 
附根文件系统挂载流程图

转载于:https://www.cnblogs.com/armlinux/archive/2011/03/30/2396825.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/378564.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SIFT讲解(SIFT的特征点选取以及描述是重点)

目录SIFT是什么&#xff1f;尺度空间理论SIFT特征点提取SIFT特征点描述SIFT是什么&#xff1f; SIFT ,即尺度不变特征变换( Scale-invariant feature transform&#xff0c;SIFT) ,一种特征描述方法。具有 尺度鲁棒性 旋转鲁棒性 光照鲁棒性 SIFT本身包括了特征点筛选及特征点…

操作系统多线程实现_操作系统中的线程实现

操作系统多线程实现Each process has an address space. There is one thread of control in every traditional OS. Sometimes, it is viable to have multiple threads of control in the similar address space which is running in quasi-parallel. Though they were separ…

04-图像的形状绘制

一、线段绘制 cv2.line(dst,(100,100),(400,400),(0,0,255),2,cv2.LINE_AA) 参数一&#xff1a;目标图片数据 参数二&#xff1a;当前线段绘制的起始位置&#xff08;也就是两点确定一条直线&#xff09; 参数三&#xff1a;当前线段绘制的终止位置&#xff08;也就是两点确定…

(1-e^(-j5w))/(1-e^(-jw))=e^(-j2w)*sin(5w/2)/sin(w/2)的证明过程

问题出现&#xff1a;《数字信号处理第三版》第90页刘顺兰版 最后一步怎么得到的&#xff1f; 思路&#xff1a;观察答案&#xff0c;有一个自然对数项。关键就是如何提取出这一项。 我的证明过程如下&#xff1a; 参考链接&#xff1a; 【和差化积】

05-图像的美化

一、彩色图片直方图 cv2.calcHist([image],[0],None,[256],[0.0,255.0]) 该方法的所有参数都必须用中括号括起来&#xff01;&#xff01;&#xff01; 参数一&#xff1a;传入的图片数据 参数二&#xff1a;用于计算直方图的通道&#xff0c;这里使用的是灰度直方图&#xff…

Eclipse for android 中设置java和xml代码提示功能(转)

1、设置 java 文件的代码提示功能 打开 Eclipse 依次选择 Window > Preferences > Java > Editor - Content Assist > Auto activation triggers for Java &#xff0c;设置框中默认是一个点&#xff0c; 现在将它改为&#xff1a; 以下为引用内容&#xff1a; .a…

如何利用FFT(基2时间以及基2频率)信号流图求序列的DFT

直接用两个例子作为模板说明&#xff1a; 利用基2时间抽取的FFT流图计算序列的DFT 1、按照序列x[k]序号的偶奇分解为x[k]和x2[k]&#xff0c;即x1[k]{1,1,2,1}, x2[k]{-1,-1,1,2} 2、画出信号流图并同时进行计算 计算的时候需要参考基本蝶形单元&#xff1a; 关键在于 (WN) k…

matlab4.0,matlab 4.0

4.1fort-9:0.5:9if(t>0)y-(3*t^2)5;fprintf(y%.2ft%.2f\n,y,t);elsey(3*t^2)5;fprintf(y%.2ft%.2f\n,y,t);endend编译结果&#xff1a;y248.00t-9.00y221.75t-8.50y197.00t-8.00y173.75t-7.50y152.00t-7.00y131.75t-6.50y113.00t-6.00y95.75t-5.50y80.00t-5.00y65.75t-4.50y…

图形学 射线相交算法_计算机图形学中的阴极射线管

图形学 射线相交算法阴极射线管 (Cathode Ray Tube) Ferdinand Barun of Strasbourg developed the cathode ray tube in the year 1897. It used as an oscilloscope to view and measure some electrical signals. But several other technologies exist and solid state mov…

Constructor总结

一个类如果没有构造那么系统为我们在背后创建一个0参数的构造&#xff0c;但是一旦我们创建了但参数的构造&#xff0c;那么默认的构造就没了。 View Code 1 using System;2 using System.Collections.Generic;3 using System.Linq;4 using System.Text;5 6 namespace Console…

Python连接MySQL及一系列相关操作

一、首先需要安装包pymysql(python3所对应) 我使用的是Anaconda全家桶&#xff0c;打开cmd&#xff0c;进入Anaconda下的Scripts文件夹下输入命令&#xff1a;pip install pymysql进行下载安装 二、我使用的编译器为Anaconda所带的Jupyter Notebook 1&#xff0c;在mysql中…

微机原理—可编程计数器/定时器8253概念详解

目录前言【1】定时处理方法1、定时的方法&#xff1a;2、定时和计数器【2】8253计数/定时器1、特点&#xff1a;2、芯片引脚以及电路&#xff1a;3、连接方式&#xff1a;4、工作原理&#xff1a;5、寄存器配置a、初始化操作&#xff08;三个通道单独初始化&#xff09;b、读出…

形参与实参在函数中的传递

#include <iostream> #include <cstring> using namespace std; void myFun(int a[]); int main() {int a[10];cout<<"aaa"<<sizeof(a)<<endl;//40 int为4&#xff0c;a为10个int&#xff0c;故为40cout<<"yy"<<…

带你走进缓存世界

我们搞程序的多多少少都了解点算法。总体来讲&#xff0c;算法是什么&#xff1f;算法就是“时间”和“空间”的互换策略。我们常常考究一个算法的时间复杂度或空间复杂度&#xff0c;如果我们有绝对足够的时间或空间&#xff0c;那么算法就不需要了&#xff0c;可惜这种条件是…

霍夫码编码(一种不等长,非前缀编码方式)

霍夫曼编码是一种不等长非前缀编码方式&#xff0c;于1951年由MIT的霍夫曼提出。 用于对一串数字/符号编码获取最短的结果&#xff0c;获取最大的压缩效率。 特点&#xff1a;不等长、非前缀 等长式编码 等长编码&#xff0c;意思是对出现的元素采用相同位数的序号进行标定&a…

JS 获取浏览器信息,给出友情提示,避免部分兼容性问题

最近在做webform,浏览器兼容是个问题,这里我收集了一些获取浏览器信息的资料,可以给一些用户使用时,提示浏览器版本过低,让升级版本用. 这样会给开发的我们,省下很多用来调试兼容性的时间和精力. 本人就是这样想的 ~  检测浏览器及版本使用 JavaScript 检测关于访问者的浏览器…

06-机器学习(Haar+Adaboost实现人脸、人眼检测)

机器学习是什么? 机器学习训练样本特征分类器&#xff0c;通过让机器学习的方式&#xff0c;来达到某种功能的过程 深度学习是什么&#xff1f; 深度学习海量的学习样本人工神经网络 机器学习需要&#xff1a;样本、特征、分类器、对训练后的数据进行预测或检验 人脸样本haar…

Opencv实战【3】——图像修复与图像锐化(darling in the franxx)

目录前言图像修复图像锐化darling in the franxx图片总结前言 前天&#xff0c;在群里看见有人发了这张表情包&#xff1a; 感觉女主有点好看&#xff0c;然后问室友是啥番剧&#xff08;darling in the franxx&#xff09;&#xff0c;然后就去补番了&#xff0c;然后从晚上…

07-机器学习(Hog+SVM实现小狮子识别)

一、SVM支持向量机 什么是SVM支持向量机&#xff1f; SVM支持向量机本质仍是一个分类器&#xff0c;其核心为寻求一个最优超平面最终实现分类&#xff0c;实现分类问题 在寻求超平面的时候有多种方式&#xff0c;可以使用若干条直线或曲线进行分类&#xff0c;这里使用的是直线…

Net Remoting基础篇

一、Remoting基础 什么是Remoting&#xff0c;简而言之&#xff0c;我们可以将其看作是一种分布式处理方式。从微软的产品角度来看&#xff0c;可以说Remoting就是DCOM的一种升 级&#xff0c;它改善了很多功能&#xff0c;并极好的融合到.Net平台下。Microsoft .NET Remoting …