十、非线性激活函数

一、ReLU

torch.nn.ReLU(inplace=False)官网提供的API
其中inplace表示是否在对原始数据进行替换

由函数图可以看出,负数通过ReLU之后会变成0,正数则不发生变化
在这里插入图片描述
例如:input = -1,若inplace = True,表示对原始输入数据进行替换,当通过ReLU函数(负数输出均为0)之后,input = 0
若inplace = False(默认),表示不对原始输入数据进行替换,则需要通过另一个变量(例如output)来对ReLU函数的结果进行接收存储,通过ReLU函数之后,output = 0,input = -1

二、ReLU函数使用

创建一个二维tensor数据,通过reshape转换成(batch_size,channel,H,W)类型数据格式
传入仅含有ReLU的神经网络中,运行结果可以看出,负数都变成了0,正数均保持不变

import torch
from torch import nninput = torch.tensor([[1,-0.7],[-0.8,2]])input = torch.reshape(input,(-1,1,2,2))print(input)
"""
tensor([[[[ 1.0000, -0.7000],[-0.8000,  2.0000]]]])
"""class Beyond(nn.Module):def __init__(self):super(Beyond,self).__init__()self.relu_1 = torch.nn.ReLU()def forward(self,input):output = self.relu_1(input)return  outputbeyond = Beyond()
output = beyond(input)
print(output)
"""
tensor([[[[1., 0.],[0., 2.]]]])
"""

三、ReLU训练CIFAR-10数据集上传至tensorboard

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset_test = torchvision.datasets.CIFAR10("CIFAR_10",train=False,transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(dataset_test,batch_size=64)class Beyond(nn.Module):def __init__(self):super(Beyond,self).__init__()self.relu_1 = torch.nn.ReLU()def forward(self,input):output = self.relu_1(input)return outputwriter = SummaryWriter("y_log")beyond = Beyond()
i=0
for data in dataloader:imgs,targets = datawriter.add_images("input_ReLU",imgs,i)output = beyond(imgs)writer.add_images("output_ReLU",output,i)i = i + 1writer.close()

在Terminal下运行tensorboard --logdir=y_log --port=9999,logdir为打开事件文件的路径,port为指定端口打开;
通过指定端口9999进行打开tensorboard,若不设置port参数,默认通过6006端口进行打开。
在这里插入图片描述
点击该链接或者复制链接到浏览器打开即可
在这里插入图片描述

四、Sigmoid

torch.nn.Sigmoid
在这里插入图片描述

五、Sigmoid函数使用

创建一个二维tensor数据,通过reshape转换成(batch_size,channel,H,W)类型数据格式
传入仅含有Sigmoid的神经网络中,代入Sigmodi公式即可得到相应返回结果

import torch
from torch import nninput = torch.tensor([[1,-0.7],[-0.8,2]])input = torch.reshape(input,(-1,1,2,2))print(input)
"""
tensor([[[[ 1.0000, -0.7000],[-0.8000,  2.0000]]]])
"""class Beyond(nn.Module):def __init__(self):super(Beyond,self).__init__()self.sigmoid_1 = torch.nn.Sigmoid()def forward(self,input):output = self.sigmoid_1(input)return  outputbeyond = Beyond()
output = beyond(input)
print(output)
"""
tensor([[[[0.7311, 0.3318],[0.3100, 0.8808]]]])
"""

六、Sigmoid训练CIFAR-10数据集上传至tensorboard

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset_test = torchvision.datasets.CIFAR10("CIFAR_10",train=False,transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(dataset_test,batch_size=64)class Beyond(nn.Module):def __init__(self):super(Beyond,self).__init__()self.sigmoid_1 = torch.nn.Sigmoid()def forward(self,input):output = self.sigmoid_1(input)return  outputwriter = SummaryWriter("y_log")beyond = Beyond()
i=0
for data in dataloader:imgs,targets = datawriter.add_images("input_Sigmoid",imgs,i)output = beyond(imgs)writer.add_images("output_Sigmoid",output,i)i = i + 1writer.close()

在Terminal下运行tensorboard --logdir=y_log --port=9999,logdir为打开事件文件的路径,port为指定端口打开;
通过指定端口9999进行打开tensorboard,若不设置port参数,默认通过6006端口进行打开。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/377570.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最短公共子序列_最短公共超序列

最短公共子序列Problem statement: 问题陈述: Given two strings, you have to find the shortest common super sequence between them and print the length of the super sequence. 给定两个字符串,您必须找到它们之间最短的公共超级序列&#xff0c…

QTP自传之web常用对象

随着科技的进步,“下载-安装-运行”这经典的三步曲已离我们远去。web应用的高速发展,改变了我们的思维和生活习惯,同时也使web方面的自动化测试越来越重要。今天,介绍一下我对web对象的识别,为以后的对象库编程打下基础…

leetcode中使用c++需要注意的点以及各类容器的初始化、常用成员函数

目录1、传引用2、vector使用初始化方法常用成员函数3、字符串string初始化方法常用成员函数4、哈希表 unordered_map初始化常用成员函数示例:计数器5、哈希集合 unordered_set初始化常用成员函数6、队列 queue初始化成员函数7、栈stack初始化常用成员函数7、emplace…

十一、线性层

一、Linear Layers torch.nn.Linear(in_features, out_features, biasTrue, deviceNone, dtypeNone) 以VGG神经网络为例,Linear Layers可以将特征图的大小进行变换由(1,1,4096)转换为(1,1,1000) 二、torch.nn.Linear实战 将CIFAR-10数据集中的测试集二维图像[6…

leetcode 42. 接雨水 思考分析(暴力、动态规划、双指针、单调栈)

目录题目思路暴力法动态规划双指针法单调栈题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组…

十二、Sequential

一、Sequential介绍 torch.nn.Sequential(*args) 由官网给的Example可以大概了解到Sequential是将多层网络进行便捷整合,方便可视化以及简化网络复杂性 二、复现网络模型训练CIFAR-10数据集 这里面有个Hidden units隐藏单元其实就是连个线性层 把隐藏层全部展开整…

社交问答:取代BBS的Web2.0革命

编者按:本文由乐维UP创始人俞越撰写,你也可以点击这里关注俞越的新浪微博。 BBS在中国的兴起是在95年,之后以惊人的速度发展起来。从2011年开始,国内的问答社区也如当年的BBS一样,大量涌现快速成长,大体分为…

单调栈 leetcode整理(三)

目录42. 接雨水思路分析901. 股票价格跨度思路581. 最短无序连续子数组思路一:排序双指针思路二:单调栈思路三:双指针(最省时)42. 接雨水 42. 接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子&…

python 抠图 锯齿_Python | 绘图中的抗锯齿

python 抠图 锯齿Antialiasing is another important feature of Matplotlib and in this article, we will review how to use this functionality. pyplot.antialiased() is an inbuilt function in matplotlib.pyplot which performs our required operation. 抗锯齿是Matpl…

apk 反编译

引用:http://code.google.com/p/dex2jar/issues/detail?id20 最新版:dex2jar http://code.google.com/p/dex2jar/downloads/list 错误:http://code.google.com/p/dex2jar/issues/detail?id20 这段时间在学Android应用开发,在想既然是用Jav…

OpenDiscussion_DataDrivenDesign

本文源于公司内部技术交流,如有不当之处,还请指正。 Content: 1. What is Data-driven design?2. WPF revolution.3. More about ObservableCollection.4. Question.1. What is Data-driven design?Data-driven design: is a design of usi…

十三、Loss Functions

一、Loss Functions损失函数 损失函数的作用: 1,损失函数就是实际输出值和目标值之间的差 2,由这个差便可以通过反向传播对之后的数据进行更新 Loss Functions官网给的API 里面由很多种损失函数,不同的损失函数有其不同的用途及表…

linux命令行界面_Linux中的命令行界面

linux命令行界面If you are like most people, you are probably most familiar with using a Graphical User Interface (GUI) to control your computer. Introduced to the masses by Apple on the Macintosh computer and popularized by Microsoft, a GUI provides an eas…

十四、OPTIM

一、torch.optim torch.optim.Optimizer(params, defaults)优化器官网说明 由官网给的使用说明打开看出来优化器实验步骤: ①构造选择优化器 例如采用随机梯度下降优化器SGD torch.optim.SGD(beyond.parameters(),lr0.01),放入beyond模型的参数param…

leetcode 滑动窗口小结 (二)

目录424. 替换后的最长重复字符思考分析1优化1004. 最大连续1的个数 III友情提醒方法1,基于当前最大频数方法2,基于历史最大频数424. 替换后的最长重复字符 https://leetcode-cn.com/problems/longest-repeating-character-replacement/ 给你一个仅由大…

十五、修改VGG16网络来适应自己的需求

一、VGG-16 VGG-16神经网络是所训练的数据集为ImageNet ImageNet数据集中验证集和测试集一万五千张,有一千个类别 二、加载VGG-16神经网络模型 VGG16模型使用说明 torchvision.models.vgg16(pretrainedFalse) 其中参数pretrained表示是否下载已经通过ImageNet数…

十六、保存和加载自己所搭建的网络模型

一、保存自己搭建的模型方法一 例如:基于VGG16网络模型架构的基础上加上了一层线性层,最后的输出为10类 torch.save(objmodule,f"path"),传入需要保存的模型名称以及要保存的路径位置 保存模型结构和模型的参数,保存文…

uC/OS-II OS_TASK.C中有关任务管理的函数

函数大致用途 OS_TASK.C是uC/OS-II有关任务管理的文件,它定义了一些函数:建立任务、删除任务、改变任务的优先级、挂起和恢复任务,以及获取有关任务的信息。 函数用途OSTaskCreate()建立任务OSTaskCreateExt()扩展建立任务OSTaskStkChk()堆…

Scala中的do ... while循环

做...在Scala循环 (do...while loop in Scala) do...while loop in Scala is used to run a block of code multiple numbers of time. The number of executions is defined by an exit condition. If this condition is TRUE the code will run otherwise it runs the first …

十七、完整神经网络模型训练步骤

以CIFAR-10数据集为例,训练自己搭建的神经网络模型架构 一、准备CIFAR-10数据集 CIFAR10官网使用文档 torchvision.datasets.CIFAR10(root"./CIFAR_10",trainTrue,downloadTrue) 参数描述root字符串,指明要下载到的位置,或已有数…