路由器和交换机的区别

交换机和路由器的区别

  • 交换机实现局域网内点对点通信,路由器实现收集发散,相当于一个猎头实现的中介的功能

  • 路由器属于网络层,可以处理TCP/IP协议,通过IP地址寻址;交换机属于中继层,通过MAC地址寻址(列表)

  • 集线器、交换机都是做端口扩展的,就是扩大局域网(通常都是以太网)的接入点,也就是能让局域网可以连进来更多的电脑。路由器是用来做网络间连接

  • 交换机链接局域网(自动寻址和数据交换),路由器连接不同的网络,将一个数据从一个网络送到另一个网络

 

 

WAN是英文Wide Area Network的首字母所写,即代表广域网;而LAN则是Local Area Network的所写,即本地网(或叫局域网)。那么我们不妨给路由器上的WAN口和LAN口取一个中文名称,分别是广域网端口和本地网端口。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/37603.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

护眼灯值不值得买?什么护眼灯对眼睛好

想要选好护眼台灯首先我们要知道什么是护眼台灯,大的方向来看,护眼台灯就是可以保护视力的台灯,深入些讲就是具备让灯发出接近自然光特性的光线,同时光线不会伤害人眼而出现造成眼部不适甚至是视力降低的照明设备。 从细节上看就…

【数据结构】二叉树篇|『构造二叉树』刷题

博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: 是瑶瑶子啦每日一言🌼: 所谓自由,不是随心所欲,而是自我主宰。——康德 目录 一、前言二、刷题1、最大二叉树2、从前序与中序遍历序列构造二…

怎么使用手机远程控制Win10电脑?

可以使用手机远程控制电脑吗? “近期,我将出差一段时间。问题是,我希望能够从很远的地方浏览家里电脑上的一些东西,但我不会一直随身携带笨重的笔记本电脑。我可以手机远程访问Windows电脑吗? ” 当然&am…

SpringBoot请求响应

简单参数 1. 原始方式获取请求参数 Controller方法形参中声明httpServletRequest对象 调用对象的getParameter参数名 RestController public class RequestController {RequestMapping("/simpleParam")public String simpleParam(HttpServletRequest request){Strin…

Pytorch源码搜索与分析

PyTorch的的代码主要由C10、ATen、torch三大部分组成的。其中: C10 C10,来自于Caffe Tensor Library的缩写。这里存放的都是最基础的Tensor库的代码,可以运行在服务端和移动端。PyTorch目前正在将代码从ATen/core目录下迁移到C10中。C10的代…

12-数据结构-数组、矩阵、广义表

数组、矩阵、广义表 目录 数组、矩阵、广义表 一、数组 二.矩阵 三、广义表 一、数组 这一章节理解基本概念即可。数组要看清其实下标是多少,并且二维数组,存取数据,要先看清楚是按照行存还是按列存,按行则是正常一行一行的去读…

学习Vue:slot使用

在Vue.js中,组件高级特性之一是插槽(Slots)。插槽允许您在父组件中插入内容到子组件的特定位置,从而实现更灵活的组件复用和布局控制。本文将详细介绍插槽的使用方法和优势。 什么是插槽? 插槽是一种让父组件可以向子…

AIF360入门教学

1、AIF360简介 AI Fairness 360 工具包(AIF360)是一个开源软件工具包,可以帮助检测和缓解整个AI应用程序生命周期中机器学习模型中的偏见。在整个机器学习的过程中,偏见可能存在于初始训练数据、创建分类器的算法或分类器所做的预测中。AI Fairness 360…

OPENCV C++(十一)

鼠标响应函数 //鼠标响应函数 void on_mouse(int EVENT, int x, int y, int flags, void* userdata) {Mat hh;hh *(Mat*)userdata;switch (EVENT){case EVENT_LBUTTONDOWN:{vP.x x;vP.y y;drawMarker(hh, vP, Scalar(255, 255, 255));//circle(hh, vP, 4, cvScalar(255, 255…

人工智能在监控系统中的预测与优化:提升效率和响应能力

引言:人工智能的发展给监控系统带来了新的可能性,通过分析历史监控数据和其他相关数据,人工智能可以预测未来可能发生的事件,如交通拥堵、安全隐患等,并帮助优化监控系统的配置和资源分配。这种预测和优化的能力可以提…

2023年国赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

vue3表格,编辑案例

index.vue <script setup> import { onMounted, ref } from "vue"; import Edit from "./components/Edit.vue"; import axios from "axios";// TODO: 列表渲染 const list ref([]); const getList async () > {const res await ax…

6.2.0在线编辑:GrapeCity Documents for Word (GcWord) Crack

GrapeCity Word 文档 (GcWord) 支持 Office Math 函数以及转换为 MathML GcWord 现在支持在 Word 文档中创建和编辑 Office Math 内容。GcWord 中的 OMath 支持包括完整的 API&#xff0c;可处理科学、数学和通用 Word 文档中广泛使用的数学符号、公式和方程。以下是通过 OMa…

无法在 macOS Ventura 上启动 Multipass

异常信息 ➜ ~ sudo multipass authenticate Please enter passphrase: authenticate failed: Passphrase is not set. Please multipass set local.passphrase with a trusted client. ➜ ~ multipass set local.passphrase Please enter passphrase: Please re-enter…

大语言模型LLM的一些点

LLM发展史 GPT模型是一种自然语言处理模型,使用Transformer来预测下一个单词的概率分布,通过训练在大型文本语料库上学习到的语言模式来生成自然语言文本。 GPT-1(117亿参数),GPT-1有一定的泛化能力。能够用于和监督任务无关的任务中。GPT-2(15亿参数),在生成方面表现出很…

vue自定义指令--动态参数绑定

在企业微信侧边栏应用中&#xff0c;给dialog添加了拖拽功能&#xff0c;但是因为dialog高度超过了页面高度&#xff0c;所以高度100%时拖拽有个bug--自动贴到窗口顶部而且企业侧边栏宽高都有限制&#xff0c;拖拽效果并不理想&#xff0c;所以就想缩小dialog再进行拖拽。 拖拽…

IntelliJ IDEA和Android studio怎么去掉usage和作者提示

截止到目前我已经写了 600多道算法题&#xff0c;其中部分已经整理成了pdf文档&#xff0c;目前总共有1000多页&#xff08;并且还会不断的增加&#xff09;&#xff0c;大家可以免费下载 下载链接&#xff1a;https://pan.baidu.com/s/1hjwK0ZeRxYGB8lIkbKuQgQ 提取码&#xf…

java处理CSV文件

文章目录 1. 方法2. maven依赖3. 示例代码 1. 方法 opencsv–>CSVParser&#xff1b;commons-csv–>CSVReader&#xff1b;有时候文本里有逗号可能会导致错误分割 2. maven依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>…

457. 环形数组是否存在循环

457. 环形数组是否存在循环 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a;经验吸取 原题链接&#xff1a; 457. 环形数组是否存在循环 https://leetcode.cn/problems/circular-array-loop/description/ 完成情况&#xff1a; 解题思路…

使用Pandas进行数据清理的入门示例

数据清理是数据分析过程中的关键步骤&#xff0c;它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。 本文将介绍以下6个经常使用的数据清理操作&#xff1a; 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型…