2023年国赛数学建模思路 - 复盘:校园消费行为分析

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/37592.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3表格,编辑案例

index.vue <script setup> import { onMounted, ref } from "vue"; import Edit from "./components/Edit.vue"; import axios from "axios";// TODO: 列表渲染 const list ref([]); const getList async () > {const res await ax…

6.2.0在线编辑:GrapeCity Documents for Word (GcWord) Crack

GrapeCity Word 文档 (GcWord) 支持 Office Math 函数以及转换为 MathML GcWord 现在支持在 Word 文档中创建和编辑 Office Math 内容。GcWord 中的 OMath 支持包括完整的 API&#xff0c;可处理科学、数学和通用 Word 文档中广泛使用的数学符号、公式和方程。以下是通过 OMa…

无法在 macOS Ventura 上启动 Multipass

异常信息 ➜ ~ sudo multipass authenticate Please enter passphrase: authenticate failed: Passphrase is not set. Please multipass set local.passphrase with a trusted client. ➜ ~ multipass set local.passphrase Please enter passphrase: Please re-enter…

大语言模型LLM的一些点

LLM发展史 GPT模型是一种自然语言处理模型,使用Transformer来预测下一个单词的概率分布,通过训练在大型文本语料库上学习到的语言模式来生成自然语言文本。 GPT-1(117亿参数),GPT-1有一定的泛化能力。能够用于和监督任务无关的任务中。GPT-2(15亿参数),在生成方面表现出很…

vue自定义指令--动态参数绑定

在企业微信侧边栏应用中&#xff0c;给dialog添加了拖拽功能&#xff0c;但是因为dialog高度超过了页面高度&#xff0c;所以高度100%时拖拽有个bug--自动贴到窗口顶部而且企业侧边栏宽高都有限制&#xff0c;拖拽效果并不理想&#xff0c;所以就想缩小dialog再进行拖拽。 拖拽…

IntelliJ IDEA和Android studio怎么去掉usage和作者提示

截止到目前我已经写了 600多道算法题&#xff0c;其中部分已经整理成了pdf文档&#xff0c;目前总共有1000多页&#xff08;并且还会不断的增加&#xff09;&#xff0c;大家可以免费下载 下载链接&#xff1a;https://pan.baidu.com/s/1hjwK0ZeRxYGB8lIkbKuQgQ 提取码&#xf…

java处理CSV文件

文章目录 1. 方法2. maven依赖3. 示例代码 1. 方法 opencsv–>CSVParser&#xff1b;commons-csv–>CSVReader&#xff1b;有时候文本里有逗号可能会导致错误分割 2. maven依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>…

457. 环形数组是否存在循环

457. 环形数组是否存在循环 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a;经验吸取 原题链接&#xff1a; 457. 环形数组是否存在循环 https://leetcode.cn/problems/circular-array-loop/description/ 完成情况&#xff1a; 解题思路…

使用Pandas进行数据清理的入门示例

数据清理是数据分析过程中的关键步骤&#xff0c;它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。 本文将介绍以下6个经常使用的数据清理操作&#xff1a; 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型…

explicit关键字 和 static成员

explicit关键字 和 static成员 1、explicit 关键字2、static成员&#xff08;静态成员变量属于类的&#xff08;只有所属这个类的对象才能修改&#xff09;&#xff0c;不同于全局变量&#xff08;任何对象都能修改&#xff09;&#xff09;2.1 定义和性质2.2 静态成员的使用场…

opencv进阶02-在图像上绘制多种几何图形

OpenCV 提供了方便的绘图功能&#xff0c;使用其中的绘图函数可以绘制直线、矩形、圆、椭圆等多种几何图形&#xff0c;还能在图像中的指定位置添加文字说明。 OpenCV 提供了绘制直线的函数 cv2.line()、绘制矩形的函数 cv2.rectangle()、绘制圆的函数cv2.circle()、绘制椭圆的…

【Quarkus技术系列】「云原生架构体系」在云原生时代下的Java“拯救者”是Quarkus,那云原生是什么呢?

云原生时代下的Java"拯救者" 在云原生时代&#xff0c;其实Java程序是有很大的劣势的&#xff0c;以最流行的spring boot/spring cloud微服务框架为例&#xff0c;启动一个已经优化好&#xff0c;很多bean需要lazy load的application至少需要3-4秒时间&#xff0c;内…

广西一公司泄露22万个人信息,被罚23万

近日&#xff0c;广西北海公安网安部门发现&#xff0c;北海某公司网站存在严重数据泄露问题&#xff0c;约22万个人信息数据已挂在暗网售卖。 经查&#xff0c;涉案公司主要提供网上咨询服务&#xff0c;在日常工作中收集了个人和企业等大量公民信息&#xff0c;但公司存放数…

【算法题】2547. 拆分数组的最小代价

题目&#xff1a; 给你一个整数数组 nums 和一个整数 k 。 将数组拆分成一些非空子数组。拆分的 代价 是每个子数组中的 重要性 之和。 令 trimmed(subarray) 作为子数组的一个特征&#xff0c;其中所有仅出现一次的数字将会被移除。 例如&#xff0c;trimmed([3,1,2,4,3,4…

一站式自动化测试平台-Autotestplat

3.1 自动化平台开发方案 3.1.1 功能需求 3.1.3 开发时间计划 如果是刚入门、但有一点代码基础的测试人员&#xff0c;大概 3 个月能做出演示版(Demo)进行自动化测试&#xff0c;6 个月内胜任开展工作中项目的自动化测试。 如果是有自动化测试基础的测试人员&#xff0c;大概 …

python序列化反序列化和异常处理笔记

迭代器 迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问&#xff0c;直到所有的元素被访问完结束。迭代器只能往前不会后退。 1. 可迭代对象 我们已经知道可以对list、tuple、str等类型的数据使用for...in...的…

面试热题(数组中的第K个最大元素)

给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 输入: [3,2,1,5,6,4] 和 k 2 输出: 5提到数组中最大元素&#xff0c;我们往往想到就是先给数组…

判断自己网络所在的NAT类型

文章目录 各NAT类型介绍软件准备流程 各NAT类型介绍 NAT0: OpenInternet&#xff0c;没有经过NAT地址转换&#xff0c;公网IP NAT1: Full Cone NAT&#xff0c;动态家宽可以达到最优的状态&#xff0c;外网设备可以主动发信息给NAT1网络内的设备。 NAT2: Address-Restricted C…

什么是JavaScript中的柯里化(Currying)和偏函数应用(Partial Application)?它们在JavaScript中有哪些应用场景?

1、什么是JavaScript中的柯里化(Currying)和偏函数应用(Partial Application)&#xff1f;它们在JavaScript中有哪些应用场景&#xff1f; 柯里化&#xff08;Currying&#xff09;和偏函数应用&#xff08;Partial Application&#xff09;是函数式编程中的两个重要概念&…

Mybatis 源码 ④ :TypeHandler

文章目录 一、前言二、DefaultParameterHandler1. DefaultParameterHandler#setParameters1.1 UnknownTypeHandler1.2 自定义 TypeHandler 三、DefaultResultSetHandler1. hasNestedResultMaps2. handleRowValuesForNestedResultMap2.1 resolveDiscriminatedResultMap2.2 creat…