chapter 1 formation of crystal, basic concepts

chapter 1 晶体的形成

在这里插入图片描述

1.1 Quantum Mechanics and atomic structure

SUMMARY OF 1.1

1.1.1 Old Quantum Theory

problems of planetary model:

  • atom would be unstable
  • radiate EM wave of continuous frequency

to solve the prablom of planetary model:

  • Bohr: Quantum atomic structure
  • Planck: Quantum

Old Quantum Theory: Planck, Einstein, Bohr, de Broglie

  1. Planck’s theory: Each atomic oscillator can have only discrete values of energy. E = n h ν , n = 0 , 1 , 2 , … E=nh \nu, n=0, 1, 2, \dots E=nhν,n=0,1,2,
  2. Einstein: photon, E = h ν = ℏ ω E=h\nu=\hbar \omega E=hν=ω, p = E c n = h ν c n = h λ n = ℏ k p= \frac{E}{c}n=\frac{h\nu}{c}n=\frac{h}{\lambda}n=\hbar k p=cEn=chνn=λhn=k
  3. Bohr: H atom model
  4. de Broglie: Matter wave, E = h ν = ℏ ω E=h\nu=\hbar \omega E=hν=ω, E k = 1 2 m ν 2 = p 2 2 m = ( ℏ k ) 2 2 m E_k=\frac{1}{2}m\nu^2=\frac{p^2}{2m}=\frac{(\hbar k)^2}{2m} Ek=21mν2=2mp2=2m(k)2

from de Broglie’s Hypothesis, the motion of a particle is governed by the wave propagation properties of matter wave, which means wave function.

1.1.2 Method of Quantum Mechanics

In method of Quantum Mechanics, we should get the Schrodinger Equation and solve it, then find the wave function ψ \psi ψ.

Schrodinger Equation (very important):
i ℏ ∂ Ψ ∂ t = − ℏ 2 2 m ∇ 2 Ψ + U Ψ i\hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2 \Psi+U\Psi itΨ=2m22Ψ+UΨ

a. Schrodinger Equation of free particle

KaTeX parse error: Undefined control sequence: \pPsi at position 24: …\frac{\partial \̲p̲P̲s̲i̲}{\partial t}= …

wave function of free particle: ψ ( r ⃗ , t ) = A e − i ℏ ( E t − p ⋅ r ) \psi (\vec r, t)=A e^{-\frac{i}{\hbar} (Et-p \cdot r)} ψ(r ,t)=Aei(Etpr)

E ⟶ i ℏ ∂ ∂ t E \longrightarrow i \hbar \frac{\partial}{\partial t} Eit

p ⟶ − i ℏ ∇ \mathbf{p} \longrightarrow - i\hbar \nabla piℏ∇

b. Schrodinger Equation of particle in a force field

i ℏ ∂ Ψ ∂ t = − ℏ 2 2 m ∇ 2 Ψ + U Ψ i \hbar \frac{\partial \Psi}{\partial t}= - \frac{\hbar^2}{2m}\nabla^2\Psi + U \Psi itΨ=2m22Ψ+UΨ

We consider time-independent Schrodinger Equation:

U ( r , t ) ⟶ U ( r ) U(\mathbf{r},t) \longrightarrow U(\mathbf{r}) U(r,t)U(r)

then separation of variables: KaTeX parse error: Undefined control sequence: \math at position 28: …f{r} ,t)= \psi(\̲m̲a̲t̲h̲{r})f(t)

Halmiton operator: H ^ = − ℏ 2 2 m ∇ 2 + U \hat H = -\frac{\hbar^2}{2m} \nabla^2+U H^=2m22+U

so the Schrodinger Equ becomes a new style:

H ^ ψ = E ψ \hat H \psi = E \psi H^ψ=Eψ

H ^ Ψ = i ℏ ∂ ∂ t Ψ \hat H \Psi = i\hbar \frac{\partial }{\partial t} \Psi H^Ψ=itΨ

c. Infinite Potential Well

− ( ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) -(\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x))\psi (x) = E \psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

ψ ( x ) = 2 a s i n n π a x \psi (x) = \sqrt{\frac{2}{a}}sin{\frac{n \pi}{a}x} ψ(x)=a2 sinax

E = E n = π 2 ℏ 2 2 m a 2 n 2 , n = 1 , 2 , 3 , … E=E_n = \frac{\pi^2 \hbar^2}{2ma^2}n^2, n = 1, 2, 3, \dots E=En=2ma2π22n2,n=1,2,3,

d. Harmonic Oscillator 1D

− ( ℏ 2 2 m d 2 d x 2 + 1 2 m ω 2 x 2 ) ψ ( x ) = E ψ ( x ) -(\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+\frac{1}{2}m\omega^2 x^2)\psi (x) = E \psi(x) (2m2dx2d2+21mω2x2)ψ(x)=Eψ(x)

E n = ( n + 1 2 ) ℏ ω = ( n + 1 2 ) h ν , n = 0 , 1 , 2 , 3 , … E_n = (n + \frac{1}{2})\hbar \omega = (n+\frac{1}{2})h \nu, n = 0, 1, 2, 3, \dots En=(n+21)ω=(n+21)hν,n=0,1,2,3,

  • E m i n = 1 2 h ν ( ≠ 0 ) E_{min}= \frac{1}{2}h\nu(\neq 0) Emin=21hν(=0), which is different from Planck’s blackbody theory ( E = n h ν , E m i n = 0 E=nh\nu, E_{min}=0 E=nhν,Emin=0)
  • In classical mechanics, the particle can bot exceed x(max), but in quantum mechanics, the particle may exceed x(max) (qith low probabilities)

e. Finite Potential Well

( − ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) (-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x))\psi(x) = E\psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

Quantum Tunneling

f. Atomic Structure, Schrodinger Equ. for H Atom

( − ℏ 2 2 m ∇ 2 + U ) ψ = E ψ , ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 (-\frac{\hbar^2}{2m}\nabla^2 + U)\psi = E\psi, \nabla^2 = \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} (2m22+U)ψ=Eψ,2=x22+y22+z22

Schrodinger equ. becomes:

1 r 2 ∂ ∂ r ( r 2 ∂ ψ ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ ψ ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 θ ∂ ϕ 2 + 2 m ℏ ( E − U ) ψ = 0 \frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial \psi}{\partial r}) +\frac{1}{r^2 \sin{\theta}} \frac{\partial}{\partial \theta}(\sin{\theta} \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^2\sin^2{\theta}}\frac{\partial^2\theta}{\partial \phi^2} +\frac{2m}{\hbar}(E-U)\psi = 0 r21r(r2rψ)+r2sinθ1θ(sinθθψ)+r2sin2θ1ϕ22θ+2m(EU)ψ=0

use seperation of variables: ψ ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ ) \psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) ψ(r,θ,ϕ)=R(r)Θ(θ)Φ(ϕ)

Schrodinger equ. becomes:

− sin ⁡ 2 θ R d d r ( r 2 d R d r ) − 2 m ℏ 2 r 2 sin ⁡ 2 θ ( E − U ) − sin ⁡ θ Θ = 0 \frac{-\sin^2{\theta}}{R} \frac{d}{dr}(r^2\frac{dR}{dr}) -\frac{2m}{\hbar^2} r^2 \sin^2{\theta} (E-U) -\frac{\sin{\theta}}{\Theta} = 0 Rsin2θdrd(r2drdR)22mr2sin2θ(EU)Θsinθ=0

Both Equal to a constant

{ 1 Φ d 2 Φ d ϕ 2 = − m l 2 m l 2 sin ⁡ 2 θ − 1 Θ 1 sin ⁡ θ d d θ ( sin ⁡ θ d Θ d t h e t a ) = l ( l + 1 ) 1 R d d r ( r 2 d R d r ) + 2 m ℏ 2 r 2 ( E − U ) = l ( l + 1 ) \begin{cases} \frac{1}{\Phi} \frac{d^2\Phi}{d\phi^2} = -m_l^2 \\ \frac{m_l^2}{\sin^2{\theta}} -\frac{1}{\Theta} \frac{1}{\sin{\theta}} \frac{d}{d\theta} (\sin{\theta} \frac{d\Theta}{dtheta}) =l(l+1) \\ \frac{1}{R} \frac{d}{dr}(r^2 \frac{dR}{dr})+\frac{2m}{\hbar^2} r^2(E-U) = l(l+1) \end{cases} Φ1dϕ2d2Φ=ml2sin2θml2Θ1sinθ1dθd(sinθdthetadΘ)=l(l+1)R1drd(r2drdR)+22mr2(EU)=l(l+1)

(1) ϕ \phi ϕ must be single-valued: m l = 0 , ± 1 , ± 2 , … m_l = 0, \pm 1, \pm2, \dots ml=0,±1,±2,

(2) Θ \Theta Θ must be finite: l = 0 , 1 , 2 , … a n d l ≥ ∣ m l ∣ l = 0, 1, 2, \dots and \ \ l \ge |m_l| l=0,1,2,and  lml

(3) R must be finite: E = E n = − Z 2 e 4 m 8 ϵ 0 2 h 2 1 n 2 , n = 1 , 2 , 3 , … a n d l < n E=E_n = -\frac{Z^2e^4 m}{8 \epsilon_0^2 h^2}\frac{1}{n^2}, \ n= 1, 2, 3, \dots \ \ and \ \ l<n E=En=8ϵ02h2Z2e4mn21, n=1,2,3,  and  l<n

{ 主量子数   n : p r i n c i p l e q u a n t u m n u m b e r ⟶ d e c i d e E n 角量子数   l : o r b i t a l q u a n t u m n u m b e r ⟶ 0 , 1 , 2 , … , n − 1 磁量子数   m l : m a g n e t i c q u a n t u m n u m b e r ⟶ 0 , ± 1 , ± 2 , ± 3 , … , ± l \begin{cases} 主量子数 \ \ n:\ principle\ quantum\ number\ \longrightarrow\ decide\ E_n\\ 角量子数 \ \ l:\ orbital\ quantum\ number\ \longrightarrow\ 0, 1, 2, \dots , n-1 \\ 磁量子数 \ \ m_l: \ magnetic\ quantum\ number\ \longrightarrow\ 0, \pm 1, \pm2, \pm 3, \dots, \pm l \end{cases} 主量子数  n: principle quantum number  decide En角量子数  l: orbital quantum number  0,1,2,,n1磁量子数  ml: magnetic quantum number  0,±1,±2,±3,,±l

不考虑自旋,量子数=波函数个数=量子态数=轨道数

Pauli’s Exclusion Principle: not 2 electrons in a system ( an atom or a solid ) can be in the same quantum state ( have the same n, l, m l m_l ml, m s m_s ms)

1.1.3 Distributing functions of micro-particles

A system with N identical micro-particles, without either generation of new particles or vanishing of existed particles, without energy exchange—an isolated system

energy level: E 1 , E 2 , E 3 , … , E l , … E_1, E_2, E_3, \dots,E_l, \dots E1,E2,E3,,El,

degeneracy: ω 1 , ω 2 , ω 3 , … . ω l , … \omega_1, \omega_2,\omega_3,\dots.\omega_l,\dots ω1,ω2,ω3,.ωl,

particle number: a 1 , a 2 , a 3 , … , a l , … a_1, a_2, a_3, \dots,a_l,\dots a1,a2,a3,,al,

全同性原理给量子统计和经典统计带来重要差别;
泡利不相容原理又给费米子和玻色子的统计带来重要差别。

自旋为 ± 1 2 \pm\frac{1}{2} ±21的粒子服从泡利不相容原理。

a. Boltzmann system

Every particle is identified, the number of particles in an quantum state is unlimited.

标号可分辨,能级上粒子数无限制

a l = ω l e α + β E l a_l = \frac{\omega_l}{e^{\alpha+\beta E_l}} al=eα+βElωl

Boltzmann statistics: f l = a l ω l = 1 e α + β E l = 1 e E l − μ k B T f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} }} fl=ωlal=eα+βEl1=ekBTElμ1

b. Bose system

Every particle is unidentified, the number of particles in an quantum state is unlimited.

(photon,phonon…) - Boson

玻色子:声子、光子

不可分辨,能级上粒子无限

a l = ω l e α + β E l − 1 a_l = \frac{\omega_l}{e^{\alpha+\beta E_l} -1} al=eα+βEl1ωl

Bose-Einstein statistics: f l = a l ω l = 1 e α + β E l − 1 = 1 e E l − μ k B T − 1 f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}-1} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} } -1} fl=ωlal=eα+βEl11=ekBTElμ11

c.Femi system

Every particle is unidentified, the number of particles in an quantum state is limited by Pauli repulsive principle.

(electron, proton…) - Fermion

费米子:电子、质子

不可分辨,能级上粒子个数有限

a l = ω l e α + β E l + 1 a_l = \frac{\omega_l}{e^{\alpha+\beta E_l} +1} al=eα+βEl+1ωl

Fermi-Dirac statistics: f l = a l ω l = 1 e α + β E l + 1 = 1 e E l − μ k B T + 1 f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}+1} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} } +1} fl=ωlal=eα+βEl+11=ekBTElμ+11

α = − μ k B T , β = 1 k B t \alpha = - \frac{\mu}{k_B T},\ \ \ \beta = \frac{1}{k_B t} α=kBTμ,   β=kBt1

统计力学

1.2 binding

1.2.1 interatomic bonding

potential between two atoms: U ( R ) = − a R m + b R n U(R)=\frac{-a}{R^m}+\frac{b}{R^n} U(R)=Rma+Rnb

attraction and repulsionA higher binding energy means a higher melting point!

1.2.2 ionic bond

Ionic bond is formed between atoms with large differences in electronegativity. (电负性相差较大)

binding energy: 150~370 kcal/mol

Cohesive Energy in Ionic Crystal

U ( r ) = − N a q 2 4 π ϵ 0 2 r + N B ′ r n U(r) = - \frac{Naq^2}{4\pi \epsilon_0^2 r} +\frac{NB'}{r^n} U(r)=4πϵ02rNaq2+rnNB

Madelung constant: B ′ = ∑ j = 1 2 N − 1 b l j n , α = ∑ j = 1 2 N − 1 δ j l j B' = \sum_{j=1}^{2N-1} \frac{b}{l_j^n}, \ \ \ \ \alpha = \sum_{j=1}^{2N-1} \frac{\delta_j}{l_j} B=j=12N1ljnb,    α=j=12N1ljδj

The bigger the cell, the more exactness the Madelung constant is.

在这里插入图片描述

1.2.3Van der Waals bond

1.2.4 Hydrogen bond

1.2.5 Covalent bond

1.2.6 Metallic bond

1.3 crystal structure and typical crystals

1.3.1 crystal structure

basic concept:

  • 无定形晶体 Amorphous (Non-crystalline) Solid: All atoms have order only within a few atomic or molecular dimensions. — random arrangement in a bigger size
  • 长程有序 Crystal: All atoms or molecules in the solid have a regular geometric arrangement or periodicity. — highly ordered
  • 平移对称性 Periodicity: The quality of recurring at regular intervals.
  • 基元 Basis: Repeatable structure units.
  • 格点 Latice site: The dot representing a basis.
  • 晶格 Lattice (Crystal lattice): Geometric pattern of crystal structure

Crystal Structure = Lattice + Basis

primitive vectors 基矢

position vectors 格矢

primitive unit cell 原胞

conventional unit cell 晶胞

Bravais Lattice 布拉伐点阵:The geometric pattern of basis’ arrangement; all points of the lattice is identical.

Bravais lattice only summarizes the geometry of crystals, regardless of what the actual units may be.

The basis consists of the atoms, their spaces and bond angles.

Bravais lattice:

  1. Cubic 立方
  2. Hexahonal 六方
  3. Tetragonal 四方
  4. Trigonal 三方
  5. Monoclinic 单斜
  6. Orthorhomic 正交
  7. Triclinic 三斜

7种bravais晶系,14种bravais点阵,32点群
Bravais Lattice
Catalog of the 14 Bravais lattices classified according to their lattice system Lattice System Point Group Primitive Base-Centered Body-Centered Face-Centered

1.3.2 typical crystal structure

a. important parameters in crystal structure

number of atoms per unit cell: n

the number of nearest neighbors, or Coordination Number: CN 配位数

Atomic Packing Factor: APF 原子堆积因数

A P F = v o l u m e o f a t o m s i n u n i t c e l l v o l u m e o f u n i t c e l l APF = \frac{volume\ \ of \ \ atoms \ \ in \ \ unit \ \ cell}{volume \ \ of \ \ unit\ \ cell} APF=volume  of  unit  cellvolume  of  atoms  in  unit  cell

Atomic Radius: 原子半径

b. typical cubic structure of metal

在这里插入图片描述

c. typical crystal structure of semiconductor

在这里插入图片描述
在这里插入图片描述

d. typical crystal structure of Ionic Crystal

在这里插入图片描述

e. typical crystal structure and the Bravais Lattice

在这里插入图片描述

1.4 Reciprocal Lattice and Brillouin Zone

1.4.1 Reciprocal Lattice 倒易点阵

晶体衍射得到的图象(衍射斑点)是倒易点阵的二维投影空间放大。

Fourier series: 傅里叶级数
f ( x + 2 π ) = f ( x ) f(x+2\pi) = f(x) f(x+2π)=f(x)
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x) = \frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n \cos {nx} +b_n \sin{nx}) f(x)=2a0+n=1(ancosnx+bnsinnx)
f ( x ) = ∑ n c n e i n x , c n = 1 2 π ∫ − π π f ( x ) e − i n x d x f(x) =\sum_n c_n e^{inx},\ \ \ c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx f(x)=ncneinx,   cn=2π1ππf(x)einxdx

Reciprocal lattice (space): 倒易点阵,晶体空间周期性

  1. 如何求倒格矢?
  2. 点阵和倒易点阵的原胞体积关系?
  3. 正格矢和倒格矢晶面的关系?
  4. 互为倒易?
    1D 3D的倒格矢
    互为倒易SC--SC, FCC-BCC, BCC-FCC
    倒格矢

reciprocal space & wave-vector space (k-space): 倒易空间和波矢空间(k空间)

u ( x , t ) = A cos ⁡ ( ω t − k x + ϕ 0 ) u(x,t) = A \cos (\omega t - k x +\phi_0) u(x,t)=Acos(ωtkx+ϕ0)

u ~ ( x , t ) = A ~ e i ( ω t − k x ) \widetilde{u}(x,t) =\widetilde{A} e^{i(\omega t - k x)} u (x,t)=A ei(ωtkx)

k = 2 π λ n ^ , b = 2 π a i ^ , G = 2 π p a i ^ \mathbf{k} = \frac{2 \pi}{\lambda} \hat n ,\ \ \mathbf{b} = \frac{2\pi}{a} \hat i ,\ \ \mathbf{G} = \frac{2\pi p}{a}\hat i k=λ2πn^,  b=a2πi^,  G=a2πpi^

1.4.2 Crystal Diffraction 晶体衍射

The Bragg Law:将晶体视作平行等距的晶面,将晶体对电磁波的衍射看作一组组晶面对电磁波的反射

2 d sin ⁡ θ = n λ 2d \sin{\theta} = n\lambda 2dsinθ=

Bragg's Law
Bragg's Law
Laue equation

入射和散射的电磁波波程差:
KaTeX parse error: Undefined control sequence: \mathcf at position 35: …cos \theta ' = \̲m̲a̲t̲h̲c̲f̲{d} \cdot (\mat…$

Laue Equ (与布拉格定律等价的晶体衍射关系): k ′ − k = G , Δ k = G \mathbf{ k' - k = G, \ \ \ \Delta k = G} kk=G,   Δk=G

2 k ⋅ G = G 2 2 \mathbf{k} \cdot \mathbf{G} = G^2 2kG=G2

Laue Equ
在这里插入图片描述
Ewald structure

晶体衍射的实际过程真实存在的:电子束,样品台(晶体),接收屏上的衍射斑点。

其他的(倒易点阵、Laue Equ、Ewald球)都是虚拟的,但是它们可以帮助分析衍射的过程和原理、以及衍射斑点的位置。

process of diffraction

Ewald Sphere
Ewald structure

1.4.3 Brillouin Zone 布里渊区

以一个格点为原点O,找到原点O与其他格点的连线的中垂面,这些中垂面形成许多封闭区域,即布里渊区。

包围原点且最近的叫做第一布里渊区,此后称为第二、第三,以此类推。

  • 倒易点阵的倒格原点在第一布里渊区的中点。
  • 所有布里渊区具有相同的体积。
  • 每个布里渊区含有且仅有一个格点。
  • 一个布里渊区的体积等于一个原胞的体积。
  • 布里渊区是晶格振动和能带理论中的常用概念。电子在跨越倒格矢中垂面(布里渊区界面)时会发生能量不连续变化。

在这里插入图片描述

在这里插入图片描述

1-st BZ

Brillouin Zone Interface & Crystal diffraction

发生晶体衍射的条件:

  1. 满足布拉格定律;
  2. 满足Laue Equ.;
  3. 波矢 k ⃗ \vec k k 的端点落在布里渊区界面上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/35242.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yolov5、YOLOv7、YOLOv8改进:注意力机制CA

论文题目&#xff1a;《Coordinate Attention for Efficient Mobile NetWork Design》论文地址&#xff1a; https://arxiv.org/pdf/2103.02907.pdf 本文中&#xff0c;作者通过将位置信息嵌入到通道注意力中提出了一种新颖的移动网络注意力机制&#xff0c;将其称为“Coordin…

拓扑布局和建立小型网络

练习 2.6.1&#xff1a;拓扑布局和建立小型网络 地址表 本实验不包括地址表。 拓扑图 学习目标 正确识别网络中使用的电缆物理连接点对点交换网络验证每个网络的基本连通性 简介&#xff1a; 许多网络问题都可以在网络的物理层解决。因此&#xff0c;必须清楚了解网络连接…

Python数据分析实战-列表字符串、字符串列表、字符串的转化(附源码和实现效果)

实现功能 str([None,master,hh]) ---> [None,"master","hh"] ---> "None,master,hh" 实现代码 import re import astx1 str([None,master,hh]) print(x1)x2 ast.literal_eval(x1) print(x2)x3 ",".join(str(item) for item…

阿里云服务器是什么?阿里云服务器有什么优缺点?

阿里云服务器是什么&#xff1f;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;云服务器可以降低IT成本提升运维效率&#xff0c;免去企业或个人前期采购IT硬件的成本&#xff0c;阿里云服务器让用户像使用水、电、天然气等公共资源一样便捷、高效地使用服务器…

Controller是线程安全吗?如何实现线程安全

测试是否是线程安全 RequestMapping("/test") RestController public class TestController {//1、定义num&#xff0c;判断不同线程访问的时候&#xff0c;num的返回结果是否一致private Integer num0;/*** 2、定义两个方法*/GetMapping("/count1")publi…

【UE4 RTS】08-Setting up Game Clock

前言 本篇实现的效果是在游戏运行后能够记录当前的游戏时间&#xff08;年月日时分秒&#xff09;&#xff0c;并且可以通过修改变量从而改变游戏时间进行的快慢。 效果 步骤 1. 在Blueprints文件夹中新建如下两个文件夹&#xff0c;分别命名为“GameSettings”、“Player”…

JZ33二叉搜索树的后序遍历序列

题目地址&#xff1a;二叉搜索树的后序遍历序列_牛客题霸_牛客网 题目回顾&#xff1a; 解题思路&#xff1a; 使用栈 栈的特点是&#xff1a;先进后出。 通读题目后&#xff0c;我们可以得出&#xff0c;二叉搜索树是左子节点小于根节点&#xff0c;右子节点大于根节点。 …

章节5:脚本注入网页-XSS

章节5&#xff1a;脚本注入网页-XSS XSS &#xff1a;Cross Site Script 恶意攻击者利用web页面的漏洞&#xff0c;插入一些恶意代码&#xff0c;当用户访问页面的时候&#xff0c;代码就会执行&#xff0c;这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…

Elasticsearch的一些基本概念

文章目录 基本概念&#xff1a;文档和索引JSON文档元数据索引REST API 节点和集群节点Master eligible节点和Master节点Data Node 和 Coordinating Node其它节点 分片(Primary Shard & Replica Shard)分片的设定操作命令 基本概念&#xff1a;文档和索引 Elasticsearch是面…

SQL-每日一题【1517. 查找拥有有效邮箱的用户】

题目 表: Users 编写一个解决方案&#xff0c;以查找具有有效电子邮件的用户。 一个有效的电子邮件具有前缀名称和域&#xff0c;其中&#xff1a; 前缀 名称是一个字符串&#xff0c;可以包含字母&#xff08;大写或小写&#xff09;&#xff0c;数字&#xff0c;下划线 _ &…

RT-Thread Smart 用户态开发体验

背景 RT-Thread Smart 是基于 RT-Thread 操作系统上的混合操作系统&#xff0c;它把应用从内核中独立出来&#xff0c;形成独立的用户态应用程序&#xff0c;并具备独立的地址空间。 自 V5.0.0 起&#xff0c;rt-smart 分支已合并至 master 分支上&#xff0c;下载 rt-thread …

【学习】若依源码(前后端分离版)之 “ 上传图片功能实现”

大型纪录片&#xff1a;学习若依源码&#xff08;前后端分离版&#xff09;之 “ 上传图片功能实现” 前言前端部分后端部分结语 前言 图片上传也基本是一个项目的必备功能了&#xff0c;所以今天和大家分享一下我最近在使用若依前后端分离版本时&#xff0c;如何实现图片上传…

虚拟现实与增强现实技术的商业应用

章节一&#xff1a;引言 随着科技的不断发展&#xff0c;虚拟现实&#xff08;Virtual Reality&#xff0c;简称VR&#xff09;与增强现实&#xff08;Augmented Reality&#xff0c;简称AR&#xff09;技术正日益成为商业领域中的重要创新力量。这两种技术为企业带来了前所未…

Oracle将与Kubernetes合作推出DevOps解决方案!

导读Oracle想成为云计算领域的巨头&#xff0c;但它不是推出自己品牌的云DevOps软件&#xff0c;而是将与CoreOS在Kubernetes端展开合作。七年前&#xff0c;Oracle想要成为Linux领域的一家重量级公司。于是&#xff0c;Oracle主席拉里埃利森&#xff08;Larry Ellison&#xf…

阿里云Windows服务器怎么安装多个网站?

本文阿里云百科介绍如何在Windows Server 2012 R2 64位系统的ECS实例上使用IIS服务器搭建多个Web站点。本教程适用于熟悉Windows操作系统&#xff0c;希望合理利用资源、统一管理站点以提高运维效率的用户。比如&#xff0c;您可以在一台云服务器上配置多个不同分类的博客平台或…

wps设置一键标题字体和大小

参考 wps设置一键标题字体和大小&#xff1a;https://www.kafan.cn/A/7v5le1op3g.html 统一一键设置

docsify gitee 搭建个人博客

docsify & gitee 搭建个人博客 文章目录 docsify & gitee 搭建个人博客1.npm 安装1.1 在Windows上安装npm&#xff1a;1.2 在macOS上安装npm&#xff1a;1.3 linux 安装npm 2. docsify2.1 安装docsify2.2 自定义配置2.2.1 通过修改index.html&#xff0c;定制化开发页面…

24届近5年东南大学自动化考研院校分析

今天给大家带来的是东南大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、东南大学 学校简介 东南大学是我国最早建立的高等学府之一&#xff0c;素有“学府圣地”和“东南学府第一流”之美誉。东南大学前身是创建于1902年的三江师范学堂。1921年经近代著名教育家…

数据结构-栈的实现(C语言版)

前言 栈是一种特殊的线性表&#xff0c;只允许在固定的一端进行插入和删除的操作&#xff0c;进行数据插入和删除的一端叫做栈顶&#xff0c;另一端叫做栈底。 栈中的数据元素遵循后进先出的的原则。 目录 1.压栈和出栈 2. 栈的实现 3.测试代码 1.压栈和出栈 压栈&#xff…

k8s 滚动更新控制(一)

在传统的应用升级时&#xff0c;通常采用的方式是先停止服务&#xff0c;然后升级部署&#xff0c;最后将新应用启动。这个过程面临一个问题&#xff0c;就是在某段时间内&#xff0c;服务是不可用的&#xff0c;对于用户来说是非常不友好的。而kubernetes滚动更新&#xff0c;…