yolov5、YOLOv7、YOLOv8改进:注意力机制CA

论文题目:《Coordinate Attention for Efficient Mobile NetWork Design》
论文地址:  https://arxiv.org/pdf/2103.02907.pdf

请添加图片描述

 

本文中,作者通过将位置信息嵌入到通道注意力中提出了一种新颖的移动网络注意力机制,将其称为“Coordinate Attention”。与通过2维全局池化将特征张量转换为单个特征向量的通道注意力不同,Coordinate注意力将通道注意力分解为两个1维特征编码过程,分别沿2个空间方向聚合特征。这样,可以沿一个空间方向捕获远程依赖关系,同时可以沿另一空间方向保留精确的位置信息。然后将生成的特征图分别编码为一对方向感知和位置敏感的attention map,可以将其互补地应用于输入特征图,以增强关注对象的表示。


不同于通道注意力将输入通过2D全局池化转化为单个特征向量,CoordAttention将通道注意力分解为两个沿着不同方向聚合特征的1D特征编码过程。这样的好处是可以沿着一个空间方向捕获长程依赖,沿着另一个空间方向保留精确的位置信息。然后,将生成的特征图分别编码,形成一对方向感知和位置敏感的特征图,它们可以互补地应用到输入特征图来增强感兴趣的目标的表示
 

下面附上改进代码

YOLOv5改进:

common中加入

 

class h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)
class CA(nn.Module):# Coordinate Attention for Efficient Mobile Network Design'''Recent studies on mobile network design have demonstrated the remarkable effectiveness of channel attention (e.g., the Squeeze-and-Excitation attention) for liftingmodel performance, but they generally neglect the positional information, which is important for generating spatially selective attention maps. In this paper, we propose anovel attention mechanism for mobile iscyy networks by embedding positional information into channel attention, whichwe call “coordinate attention”. Unlike channel attentionthat transforms a feature tensor to a single feature vector iscyy via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes that aggregate features along the two spatial directions, respectively'''def __init__(self, inp, oup, reduction=32):super(CA, self).__init__()mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()pool_h = nn.AdaptiveAvgPool2d((h, 1))pool_w = nn.AdaptiveAvgPool2d((1, w))x_h = pool_h(x)x_w = pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out   

 

在yolo.py中注册

找到parse.model模块   加入下列代码

 

        elif m in [CA]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputssc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]

添加配置文件

# YOLOv5 🚀, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth iscyy multiple
width_multiple: 0.50  # layer channel iscyy multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[-1, 1, CA, [1024]],[[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

 到此YOLOv5就改好了

下面介绍yolov7

同样在common中加入以下代码

 

class h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)
class CA(nn.Module):# Coordinate Attention for Efficient Mobile Network Design'''Recent studies on mobile network design have demonstrated the remarkable effectiveness of channel attention (e.g., the Squeeze-and-Excitation attention) for liftingmodel performance, but they generally neglect the positional information, which is important for generating spatially selective attention maps. In this paper, we propose anovel attention mechanism for mobile iscyy networks by embedding positional information into channel attention, whichwe call “coordinate attention”. Unlike channel attentionthat transforms a feature tensor to a single feature vector iscyy via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes that aggregate features along the two spatial directions, respectively'''def __init__(self, inp, oup, reduction=32):super(CA, self).__init__()mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()pool_h = nn.AdaptiveAvgPool2d((h, 1))pool_w = nn.AdaptiveAvgPool2d((1, w))x_h = pool_h(x)x_w = pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out   

 

在yolo.py中注册

找到parse.model模块   加入下列代码

 

        elif m in [CA]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputssc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]

添加配置文件

# YOLOv7 🚀, GPL-3.0 license
# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel iscyy multiple# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]],  # 0[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]],  # 3-P2/4 [-1, 1, C3, [128]], [-1, 1, Conv, [256, 3, 2]], [-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 16-P3/8[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],          [-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]],[-1, 1, C3, [1024]],[-1, 1, Conv, [256, 3, 1]],]# yolov7 head by iscyy
head:[[-1, 1, SPPCSPC, [512]],[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[31, 1, Conv, [256, 1, 1]],[[-1, -2], 1, Concat, [1]],[-1, 1, C3, [128]],[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[18, 1, Conv, [128, 1, 1]],[[-1, -2], 1, Concat, [1]],[-1, 1, C3, [128]],[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, CA, [128]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 44], 1, Concat, [1]],[-1, 1, C3, [256]], [-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]], [[-1, -3, 39], 1, Concat, [1]],[-1, 3, C3, [512]],# 检测头 -----------------------------[49, 1, RepConv, [256, 3, 1]],[55, 1, RepConv, [512, 3, 1]],[61, 1, RepConv, [1024, 3, 1]],[[62,63,64], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

至此v7就配置完成了

v8的配置同v5是一样的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/35239.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

拓扑布局和建立小型网络

练习 2.6.1:拓扑布局和建立小型网络 地址表 本实验不包括地址表。 拓扑图 学习目标 正确识别网络中使用的电缆物理连接点对点交换网络验证每个网络的基本连通性 简介: 许多网络问题都可以在网络的物理层解决。因此,必须清楚了解网络连接…

Python数据分析实战-列表字符串、字符串列表、字符串的转化(附源码和实现效果)

实现功能 str([None,master,hh]) ---> [None,"master","hh"] ---> "None,master,hh" 实现代码 import re import astx1 str([None,master,hh]) print(x1)x2 ast.literal_eval(x1) print(x2)x3 ",".join(str(item) for item…

阿里云服务器是什么?阿里云服务器有什么优缺点?

阿里云服务器是什么?云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务,云服务器可以降低IT成本提升运维效率,免去企业或个人前期采购IT硬件的成本,阿里云服务器让用户像使用水、电、天然气等公共资源一样便捷、高效地使用服务器…

Controller是线程安全吗?如何实现线程安全

测试是否是线程安全 RequestMapping("/test") RestController public class TestController {//1、定义num,判断不同线程访问的时候,num的返回结果是否一致private Integer num0;/*** 2、定义两个方法*/GetMapping("/count1")publi…

【UE4 RTS】08-Setting up Game Clock

前言 本篇实现的效果是在游戏运行后能够记录当前的游戏时间(年月日时分秒),并且可以通过修改变量从而改变游戏时间进行的快慢。 效果 步骤 1. 在Blueprints文件夹中新建如下两个文件夹,分别命名为“GameSettings”、“Player”…

JZ33二叉搜索树的后序遍历序列

题目地址:二叉搜索树的后序遍历序列_牛客题霸_牛客网 题目回顾: 解题思路: 使用栈 栈的特点是:先进后出。 通读题目后,我们可以得出,二叉搜索树是左子节点小于根节点,右子节点大于根节点。 …

章节5:脚本注入网页-XSS

章节5:脚本注入网页-XSS XSS :Cross Site Script 恶意攻击者利用web页面的漏洞,插入一些恶意代码,当用户访问页面的时候,代码就会执行,这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…

Elasticsearch的一些基本概念

文章目录 基本概念:文档和索引JSON文档元数据索引REST API 节点和集群节点Master eligible节点和Master节点Data Node 和 Coordinating Node其它节点 分片(Primary Shard & Replica Shard)分片的设定操作命令 基本概念:文档和索引 Elasticsearch是面…

SQL-每日一题【1517. 查找拥有有效邮箱的用户】

题目 表: Users 编写一个解决方案,以查找具有有效电子邮件的用户。 一个有效的电子邮件具有前缀名称和域,其中: 前缀 名称是一个字符串,可以包含字母(大写或小写),数字,下划线 _ &…

RT-Thread Smart 用户态开发体验

背景 RT-Thread Smart 是基于 RT-Thread 操作系统上的混合操作系统,它把应用从内核中独立出来,形成独立的用户态应用程序,并具备独立的地址空间。 自 V5.0.0 起,rt-smart 分支已合并至 master 分支上,下载 rt-thread …

【学习】若依源码(前后端分离版)之 “ 上传图片功能实现”

大型纪录片:学习若依源码(前后端分离版)之 “ 上传图片功能实现” 前言前端部分后端部分结语 前言 图片上传也基本是一个项目的必备功能了,所以今天和大家分享一下我最近在使用若依前后端分离版本时,如何实现图片上传…

虚拟现实与增强现实技术的商业应用

章节一:引言 随着科技的不断发展,虚拟现实(Virtual Reality,简称VR)与增强现实(Augmented Reality,简称AR)技术正日益成为商业领域中的重要创新力量。这两种技术为企业带来了前所未…

Oracle将与Kubernetes合作推出DevOps解决方案!

导读Oracle想成为云计算领域的巨头,但它不是推出自己品牌的云DevOps软件,而是将与CoreOS在Kubernetes端展开合作。七年前,Oracle想要成为Linux领域的一家重量级公司。于是,Oracle主席拉里埃利森(Larry Ellison&#xf…

阿里云Windows服务器怎么安装多个网站?

本文阿里云百科介绍如何在Windows Server 2012 R2 64位系统的ECS实例上使用IIS服务器搭建多个Web站点。本教程适用于熟悉Windows操作系统,希望合理利用资源、统一管理站点以提高运维效率的用户。比如,您可以在一台云服务器上配置多个不同分类的博客平台或…

wps设置一键标题字体和大小

参考 wps设置一键标题字体和大小:https://www.kafan.cn/A/7v5le1op3g.html 统一一键设置

docsify gitee 搭建个人博客

docsify & gitee 搭建个人博客 文章目录 docsify & gitee 搭建个人博客1.npm 安装1.1 在Windows上安装npm:1.2 在macOS上安装npm:1.3 linux 安装npm 2. docsify2.1 安装docsify2.2 自定义配置2.2.1 通过修改index.html,定制化开发页面…

24届近5年东南大学自动化考研院校分析

今天给大家带来的是东南大学控制考研分析 满满干货~还不快快点赞收藏 一、东南大学 学校简介 东南大学是我国最早建立的高等学府之一,素有“学府圣地”和“东南学府第一流”之美誉。东南大学前身是创建于1902年的三江师范学堂。1921年经近代著名教育家…

数据结构-栈的实现(C语言版)

前言 栈是一种特殊的线性表,只允许在固定的一端进行插入和删除的操作,进行数据插入和删除的一端叫做栈顶,另一端叫做栈底。 栈中的数据元素遵循后进先出的的原则。 目录 1.压栈和出栈 2. 栈的实现 3.测试代码 1.压栈和出栈 压栈&#xff…

k8s 滚动更新控制(一)

在传统的应用升级时,通常采用的方式是先停止服务,然后升级部署,最后将新应用启动。这个过程面临一个问题,就是在某段时间内,服务是不可用的,对于用户来说是非常不友好的。而kubernetes滚动更新,…

【数据结构】二叉树篇| 纲领思路01+刷题

博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: 是瑶瑶子啦每日一言🌼: 所谓自由,不是随心所欲,而是自我主宰。——康德 目录 一、二叉树刷题纲领二、刷题1、104. 二叉树的最大深度2、 二叉…