正题
题目大意
修改[L..R][L..R][L..R]加上[S..E][S..E][S..E]的等差数列,求最终答案。
题目大意
很明显的差分。
aia_iai为原数组,bib_ibi为一阶差分数组,cic_ici为二阶差分数组
ax=ax+s+(x−l)∗k(x∈[l..r])a_x=a_x+s+(x-l)*k(x\in[l..r])ax=ax+s+(x−l)∗k(x∈[l..r])
然后
bl=bl+sb_l=b_l+sbl=bl+s
bx=bx+d(x∈[l+1..r])b_x=b_x+d(x\in[l+1..r])bx=bx+d(x∈[l+1..r])
br+1=br+1−tb_{r+1}=b_{r+1}-tbr+1=br+1−t
cl=cl+sc_l=c_l+scl=cl+s
cl+1=cl+d−sc_{l+1}=c_l+d-scl+1=cl+d−s
cr=cl−d−tc_r=c_l-d-tcr=cl−d−t
cr+1=cr+2+tc_{r+1}=c_{r+2}+tcr+1=cr+2+t
其实弄3个数组搞一搞也行
codecodecode
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e7+10;
ll n,m,f[N],z,maxs;
int main()
{scanf("%lld%lld",&n,&m);for(ll i=1;i<=m;i++){ll l,r,s,e,k;scanf("%lld%lld%lld%lld",&l,&r,&s,&e);k=(e-s)/(r-l);f[l]+=s;f[l+1]+=k-s;f[r+1]-=k+e;f[r+2]+=e;}ll x=0,y=0;for(ll i=1;i<=n;i++){x=x+f[i];y+=x;z^=y;maxs=max(maxs,y);}printf("%lld %lld",z,maxs);
}