球形空间产生器
luogu 4035
金牌导航 高斯消元-1
题目大意
给出n+1个n维的点,让你求一个点,使该点到所有点欧几里得距离相等
输入样例
2
0.0 0.0
-1.0 1.0
1.0 0.0
输出样例
0.500 1.500
数据范围
1⩽N⩽101\leqslant N \leqslant 101⩽N⩽10
解题思路
因为所有点到该点的欧几里得距离相等,那么可以设以下方程(同时去根号)
(ai,1−x1)2+(ai,2−x2)2+...+(ai,n−xn)2=(ai−1,1−x1)2+(ai−1,2−x2)2+...+(ai−1,n−xn)2(a_{i,1}-x_1)^2+(a_{i,2}- x_2)^2+...+(a_{i,n}- x_n)^2=(a_{i-1,1}- x_1)^2+(a_{i-1,2}- x_2)^2+...+(a_{i-1,n}- x_n)^2(ai,1−x1)2+(ai,2−x2)2+...+(ai,n−xn)2=(ai−1,1−x1)2+(ai−1,2−x2)2+...+(ai−1,n−xn)2
解得
2x1(ai,1−ai−1,1)+2x2(ai,2−ai−1,2)+...+2xn(ai,n−ai−1,n)=ai,12−ai−1,12+ai,22−ai−1,22+...+ai,n2−ai−1,n22 x_1 (a_{i,1}-a_{i-1,1})+2 x_2 (a_{i,2}-a_{i-1,2}) + ... +2 x_n (a_{i,n}-a_{i-1,n})=a_{i,1}^2-a_{i-1,1}^2+a_{i,2}^2-a_{i-1,2}^2+...+a_{i,n}^2-a_{i-1,n}^22x1(ai,1−ai−1,1)+2x2(ai,2−ai−1,2)+...+2xn(ai,n−ai−1,n)=ai,12−ai−1,12+ai,22−ai−1,22+...+ai,n2−ai−1,n2
同理,推出另外n-1个式子,然后高斯消元
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define abss(x) (x < 0? -x: x)
using namespace std;
int n;
double a[20][20], s[20][20];
void solve()//高斯消元
{for (int i = 1; i <= n; ++i){int h = i;for (int j = i + 1; j <= n; ++j)if (abss(s[j][i]) > abss(s[h][i])) h = j;if (abss(s[h][i]) - 0.0 < 1e-6) continue;if (h != i)for (int j = i; j <= n + 1; ++j)swap(s[i][j], s[h][j]);double g = s[i][i];for (int j = i; j <= n + 1; ++j)s[i][j] /= g;for (int j = 1; j <= n; ++j)if (j != i){g = s[j][i];for (int k = i; k <= n + 1; ++k)s[j][k] -= s[i][k] * g;}}return;
}
int main()
{scanf("%d", &n);for (int i = 1; i <= n + 1; ++i)for (int j = 1; j <= n; ++j){scanf("%lf", &a[i][j]);s[i - 1][j] = 2 * (a[i][j] - a[i - 1][j]);s[i - 1][n + 1] += a[i][j] * a[i][j] - a[i - 1][j] * a[i - 1][j];//建方程}solve();for (int i = 1; i <= n; ++i)printf("%.3lf ", s[i][n + 1]);return 0;
}