通俗易懂,C#如何安全、高效地玩转任何种类的内存之Span的脾气秉性(二)

前言

读完上篇《通俗易懂,C#如何安全、高效地玩转任何种类的内存之Span(一)》,相信大家对span的本质应该非常清楚了。含着金钥匙出生的它,从小就被寄予厚望要成为.NET下编写高性能应用程序的重要积木,而且很多老前辈为了接纳它,都纷纷做出了改变,比如String、Int、Array。现在,它长大了,已经成为.NET下发挥关键作用的新值类型。

那我们又该如何接纳它呢?

一句话,熟悉它的脾气秉性,让好钢用到刀刃上

脾气秉性 - 特点

Slow vs Fast Span

上篇博客介绍了span的本质,主要涉及到三个字段,如下:

640?wx_fmt=png

当我们访问span表示的整体或部分内存时,内部的索引器通过计算(ref reference + byteOffset) + index * sizeOf(T)来正确直接地返回实际储存位置的引用,而不是通过复制内存来返回相对位置的副本,从而达到高性能,但是,现在我要告诉你,这种span被叫做slow span,为什么呢?因为C#7.2的新特性ref T支持在签名中直接返回引用(相当于直接整合了这个过程),这样就无需通过计算来确定指针开头及其起始偏移,从而真正拥有和访问数组一样高的效率,如下:

640?wx_fmt=png

这种只包含两个字段的span就叫Fast span

在所有的.NET平台,Slow Span都是可得到的,但是目前只有.NET Core 2.X原生支持Fast span。

为了让大家更直观地了解这两种Span,下面来做两组基准测试

  • 不同运行时下Span进行10万次Get、Set的基准测试

    640?wx_fmt=png

    上图非常清楚了吧,从Mean(均值)指标可以看出差异还是比较大的(约60%),net framework时代追求生产力,而core时代追求高性能,所以还是早转core吧,并且新版本core还会进一步优化span,差距将会越来越大。

  • Span vs Array的基准测试

    不同运行时下,对Span和Array进行10万次Get、Set操作

    640?wx_fmt=png

    从上图Mean(均值)指标可以得出:

    • slow span,即运行时原生不支持,在性能上,它的Get、Set操作和数组差异50%左右。

    • fast span,即运行时原生支持,在性能上,它的Get、Set操作和数组相当。

看了上面测试,可能有的同学就会问了用Array就行了,如果总是操作整个数组,这是合适的,但如果想操作数组的一部分数据呢?按照以前的做法每次复制一份相对位置的副本给调用方,这就非常消耗性能的,那么如何支持对完整或部分数组的操作保持同样高的性能呢?答案就是span,没有之一。span不仅能用于访问数组和分离数组子集,还可引用来自内存任意区域的数据,比如本机代码、栈内存、托管内存。

基准测试示例源码参考

Stack-Only

分配一块栈内存是非常快速的,也无需手工释放,它会随着当前作用域而释放,比如方法执行结束时,就自动释放了,所以需要快取快用快放。Span虽然支持所有类型的内存,但决定安全、高效地操作各种内存的下限自然取决于最严苛的内存类型,即栈内存,好比木桶能装多少水,取决于最短的那块木板。此外,上一篇博客的动画非常清晰地演示了span的本质,每次都是通过整合内部指针为新的引用返回,而.NET运行时跟踪这些内部指针的成本非常高昂,所以将span约束为仅存在于栈上,从而隐式地限制了可以存在的内部指针数量。

备注:栈内存的容量非常小, ARM、x86 和 x64 计算机,默认堆栈大小为 1 MB。

所以span必须是值类型,它不能被储存到堆上。

Stack-Only的应用场景

  1. Span不能作为类的字段

    class Impossible{Span<byte> field;
    }
  2. Span不能实现任何接口

    先来看一段C#(伪代码):

640?wx_fmt=png

使用ILDasm查看生成的IL代码:

640?wx_fmt=png

  1. 上面的代码很明确,首先让自定义的值类型实现接口IEnumerable,然后作为参数传递给Parse,最后分析IL代码发现参数被装箱了,意味着将被储存到托管堆上,如果将来C#能专门定义只用于struct的接口,那么就能扩展Stack-Only结构到此应用场景了,一起期待吧。

  2. Span不能作为异步方法的参数

    首先asyncawait 是非常棒的语法糖,不仅仅大大地简化了编写异步代码的难度,而且还带来了代码的优雅度。

    同样,先来看一段C#代码:

    public async Task TestAsync(Span<byte> data) { }

    这样的用法也是禁止的,编译时就会报错Parameter or local type Span<byte> cannot be declared in async method.。因为本质上,async & await 的内部是通过AsyncMethodBuilder来创建一个异步的状态机,某一时刻可能会将方法参数储存到托管堆上。

  3. Span不能作为泛型类型的参数

    同样,先来看一段C#代码:

    Func<Span<byte>> valueProvider = () => new Span<byte>(new byte[256]);object value = valueProvider.Invoke(); // 装箱

    这样的用法也是禁止的,编译时会报错The type Span<byte>may not be used as a type argument.。同理,span<byte>可以表示内存任意区域,而实际使用时肯定需要类型化对象,无法避免装箱。那么微软为什么不引入一种新的泛型约束:stackonly,而是决定禁止span作为泛型参数,因为这需要编译器检查所有的代码,可能还需要理解代码逻辑(因为有的类型需要运行时才能确定),不然是无法保证stackonly约束的,呵呵,目前看来是不现实的,不知人工智能能否解决这个问题。

Stack Tearing

阐述这个特点前,先简单说说计算机的字大小。

  • 计算机的字大小

    表示计算机中CPU的字长,32位CPU字长为32位,即4字节;64位CPU字长为64位,即8字节。CPU的字长决定了每次能够原子更新的连续内存块的大小

栈撕裂其实是多线程下的数据同步问题,当结构数据大于当前处理器的字大小时,都会面临这个问题。如前所述,span内部包含多个字段,这就意味着,一些处理器可能无法保证原子更新span_reference_length 字段,也就是说,多线程下_reference_length可能来自于两个不同的span。

640?wx_fmt=png

其实有两种办法可以解决这个问题:

  1. 直接处理 - 加锁,即强制同步访问。

  2. 间接处理 - 私有化字段,即不给外面观察到部分更新的机会。

如果这样,就无法保证像数组一样的高性能,因此不能给字段加锁,也不能限制访问(没意义),另外对Span的访问和写入都是直接操作的内存,如果_reference_length出现不同步的情况,还会导致内存安全问题。

这也是为什么span只能存在于栈上,即指针、数据、长度全都存于栈上,而不是引用存在堆,数据存在栈,因为span<T>不需要暂留,必须快取快用快放,否则就不要使用span。

备注:对于需要暂留到堆上的场景,它的解决方案是Memory<T>,大家可以继续关注。

.NET库的集成

为了支持轻松高效地处理 {ReadOnly}Span ,微软向.NET添加了数百个新成员和类型。目前大多是基于数组、字符串和基元类型的方法的重载 ,除此之外,还包括一些专注于特定处理方面的全新类型,比如:System.IO.Pipelines。

下面是一些比较常用的扩展:

  1. 基元类型(伪代码)

    short.Parse(ReadOnlySpan<char> s);
    int.Parse(ReadOnlySpan<char> s);
    long.Parse(ReadOnlySpan<char> s);
    DateTime.Parse(ReadOnlySpan<char> s);
    TimeSpan.Parse(ReadOnlySpan<char> input);
    Guid.Parse(ReadOnlySpan<char> input);
  2. 字符串

    public static ReadOnlySpan<char> AsSpan(this string text, int start, int length);
    public static ReadOnlySpan<char> AsSpan(this string text, int start);
    public static ReadOnlySpan<char> AsSpan(this string text);
  3. 数组

    public static Span<T> AsSpan<T>(this T[] array, int start);
    public static Span<T> AsSpan<T>(this T[] array);
    public static Span<T> AsSpan<T>(this ArraySegment<T> segment, int start, int length);
    public static Span<T> AsSpan<T>(this ArraySegment<T> segment, int start);
    public static Span<T> AsSpan<T>(this T[] array, int start, int length);

最后使用上面的API演示一个官网的例子,解析字符串"123,456"中的数字:

以前的写法

var input = "123,456";
var commaPos = input.IndexOf(',');
var first = int.Parse(input.Substring(0, commaPos));
// yes-Allocating, yes-Coping
var second = int.Parse(input.Substring(commaPos + 1));
// yes-Allocating, yes-Coping

现在的写法

var input = "123,456";
var inputSpan = input.AsSpan();
var commaPos = input.IndexOf(',');
var first = int.Parse(inputSpan.Slice(0, commaPos));
// no-Allocating, no-Coping
var second = int.Parse(inputSpan.Slice(commaPos + 1));
// no-Allocating, no-Coping

当然还是有许多这样的方法,比如System.Random、System.Net.Socket、Utf8Formatter、Utf8Parser等,明白了它的脾气秉性,对于具体的应用场景大家可以先自行查阅资料,相信认真读完上篇、本篇的同学已经具备用好这把尖刀的能力了。

总结

本篇在上篇(理解span的本质)的基础上,详细讲解span的特点和每种特点下的应用场景,希望大家能有所收获。下一篇可能会讲span的加强,以及在数据转换方面的应用,比如:Data PipelinesDiscontinuous BuffersBuffer Pooling等,也可能会讲Memory<T>,看到时候的准备吧,感兴趣请继续关注。

最后

如果有什么疑问和见解,欢迎评论区交流。
如果你觉得本篇文章对您有帮助的话,感谢您的【推荐】。
如果你对高性能编程感兴趣的话可以关注我,我会定期的在博客分享我的学习心得。
欢迎转载,请在明显位置给出出处及链接

延伸阅读

https://github.com/dotnet/coreclr/blob/master/src/System.Private.CoreLib/shared/System/Span.Fast.cs

https://github.com/dotnet/coreclr/blob/master/src/System.Private.CoreLib/shared/System/Span.cs

https://blogs.msdn.microsoft.com/dotnet/2017/10/16/ryujit-just-in-time-compiler-optimization-enhancements

https://adamsitnik.com/Hardware-Counters-Diagnoser/#how-to-get-it-running-for-net-coremono-on-windows

相关文章:

  • .Net Core中使用ref和Span<T>提高程序性能

  • C# - Span 全面介绍:探索 .NET 新增的重要组成部分

  • 有关C# 8.0、.NET Framework 4.8与NET Standard 2.1的一个说明

  • 通俗易懂,C#如何安全、高效地玩转任何种类的内存之Span

原文地址:https://www.cnblogs.com/justmine/p/10050826.html

.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/318693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4.6模拟 宽度优先搜索

总结 bfs除了代码能力没有任何算法。。。 有些细节是值得注意的 T1 面积(area) bfs被我写成了dfs。。。 &#xff08;不过我觉得这么写挺不戳&#xff09; 核心思路就是用一个flag记录当前跑得这些点有没有效 恶心之处在于本题默认mn10&#xff01;&#xff01;&#xff01;…

微软开发者大会:VS 2019 Preview 发布;Windows UX 主要技术开源

美国当地时间12月4日&#xff0c;微软正式举行 Microsoft Connect(); 2018 开发者大会&#xff0c;本次大会的 slogan 是"Build the apps of tomorrow, today."。在今年的大会上&#xff0c;看得出来微软不是憋了一个 —— 而是憋了一波大招。不妨先看一下这次大会微…

asp.net core sdk runtime 镜像[已更新至2.2.0]

在官方镜像的脚本上&#xff0c;增加了System.Drawing相关的依赖库以北京时间为默认的时间2.2.0Windows SDK地址:官方: https://dotnetcli.blob.core.windows.net/dotnet/Sdk/2.2.100/dotnet-sdk-2.2.100-win-x64.exe自己的加速地址: http://file.niusys.com/dotnet-sdk-2.2.10…

[翻译] 使用 Visual Studio 2019 来提高每个开发人员的工作效率

原文: Making every developer more productive with Visual Studio 2019今天&#xff0c;在 Microsoft Connect(); 2018 的主题演讲中&#xff0c;Scott Guthrie 宣布推出 Visual Studio 2019 Preview 1。这是 Visual Studio 下一个主要版本的首次预览。在本预览版中&#xff…

大赛:2021省选 总结

文章目录概要想清楚再敲代码&#xff01;&#xff01;&#xff01;仔细审题&#xff01;&#xff01;&#xff01;Day1T1 卡牌游戏T2 矩阵游戏T3 图函数day 2T1 宝石T2 滚榜T3 支配概要 想清楚再敲代码&#xff01;&#xff01;&#xff01; 仔细审题&#xff01;&#xff01…

ybtoj祭坛

文章目录冲啊&#xff01;&#xff08;100题祭&#xff09;125题祭140题祭首次登顶&唯一AC150题祭160题祭170题祭冲啊&#xff01;&#xff08;100题祭&#xff09; 2021.4.11 刚好100道 其实是前几天到的&#xff08;忘了是哪一道了。。。&#xff09; 今天写省选题解开了…

C++ __gnu_pbds(hash,可并堆,平衡树)

pb_ds 是GNU-C自带的一个C的扩展库&#xff0c;其中实现了很多数据结构&#xff0c;比STL里面的功能更强大 #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> // 用tree #include<ext/pb_ds/hash_policy.hpp> // 用hash #…

理解至上:二叉堆与优先队列详细用法

文章目录二叉堆概述插入代码访问代码完整代码优先队列&#xff1a;priority_queue基本用法小根堆的声明&#xff1a;结构体注意Thanks for reading&#xff01;二叉堆 概述 为什么不用pq呢 算比较简单的数据结构了 它可以用log的时间复杂度插入元素和访问&#xff08;取出&am…

ASP.NET Core 搭配 Nginx 的真实IP问题

一.前言Nginx&#xff08;Engine X&#xff09;是一个高性能HTTP和反向代理服务&#xff0c;是由俄罗斯人伊戈尔赛索耶夫为访问量第二的Rambler.ru站点&#xff08;俄文&#xff1a;Рамблер&#xff09;开发的&#xff0c;第一个公开版本0.1.0发布于2004年10月4日。 如果…

不止代码:保留道路(ybtoj 最小生成树)

文章目录题目描述解析代码thanks for reading!题目描述 解析 其实就是修建道路 我一开始只能想到枚举g去跑最小生成树 是m^2的算法&#xff08;50pts&#xff09; 但是其实每次加入的边只有一条 而且之前都不在最小生成树上的边以后也肯定不会在 所以可以建一个新的边的集合存…

不止代码:路径数量(ybtoj-最小生成树)

文章目录题目描述解析代码题目描述 解析 乍一看&#xff1a;是个水题啊&#xff01; 显然如果途径存在强连通的点&#xff0c;路径就会变为正无穷 所以缩点加拓扑dp以及一些特判应该就可以解决了&#xff01; 一交&#xff1a;40分。。。 然后就开始拆东墙补西墙的debug。。。…

重磅!!!微软发布.NET Core 2.2

我们很高兴地宣布发布.NET Core 2.2。它包括对运行时的诊断改进&#xff0c;对ARM32 for Windows和Azure Active Directory for SQL Client的支持。此版本中最大的改进是在ASP.NET Core中。ASP.NET Core 2.2和Entity Framework Core 2.2。您可以在Windows&#xff0c;macOS和Li…

[翻译] ASP.NET Core 2.2 正式版发布

本文为翻译&#xff0c;原文地址&#xff1a;https://blogs.msdn.microsoft.com/webdev/2018/12/04/asp-net-core-2-2-available-today/我&#xff08;文章作者&#xff09;很高兴地宣布ASP.NET Core 2.2现在作为.NET Core 2.2的一部分提供&#xff01;怎么获取它您可以从 .NET…

理解至上:数位dp(ybtoj-B数计数)

文章目录简要题目描述解析dp定义:试填法代码thanks for reading&#xff01;简要 数位dp&#xff0c;天下第一 最重要的应该有两个&#xff1a; 1.状态转移式的确定 2.试填法不断往后模拟 &#xff08;至今是唯一一道数位dp&#xff0c;究竟重要的是啥我其实也没有太多经验 &am…

2021“MINIEYE杯”中国大学生算法设计超级联赛(10)Pty loves string(Border+二维数点)

Pty loves string 建立Border树后&#xff0c;发现可以转化成两个子树中相同点的数量&#xff0c;时间戳转化为连续的区间后相当于有两个数组&#xff0c;每次给两个区间&#xff0c;问区间相同点权的数目。 第一个数组作为区间&#xff0c;第二个数组作为权值。将第一个数组建…

微软推出了Cloud Native Application Bundles和开源ONNX Runtime

微软的Microsoft Connect(); 2018年的开发者大会 对Azure和IoT Edge服务进行了大量更新; Windows Presentation Foundation&#xff0c;Windows Forms和Windows UI XAML Library的开源 以及.NET 基金会会员模型的扩展。但那些只是冰山一角。微软还联合Docker发布了Cloud Native…

不止代码:友好城市(动态规划)

解析 先按左端点排序得到一个右端点的新队列&#xff0c;然后就可以发现&#xff1a; 所有合法的方案都是新队列的一个单调递增队列 然后就转化成了最长上升序列的问题 代码 #include<bits/stdc.h> using namespace std; const int N1e6100; int m,n; struct node{int…

二分图匹配(一)

文章目录什么是二分图&#xff1a;例题&#xff1a;NC111768 CF741C题目描述&#xff1a;题解&#xff1a;代码&#xff1a;二分图最大匹配匈牙利算法算法思想&#xff1a;代码&#xff1a;Knig定理二分图最优匹配KM(Kuhn-Munkres)算法算法思路&#xff1a;具体操作代码&#x…

不止代码:恐狼后卫(ybtoj-区间dp)

文章目录题目描述解析代码thanks for reading!题目描述 一代炉石的眼泪啊 解析 用dp[i][j]表示i与j之间的全部消掉&#xff08;不含两端&#xff09;的最小花费 然后枚举中间最后杀死的狼就行了 本题没有一次AC&#xff0c;因为一开始dp定义成了包含两端&#xff0c;然后因为…

牛客题霸 [二叉树的之字形层序遍历] C++题解/答案

牛客题霸 [二叉树的之字形层序遍历] C题解/答案 题目描述 给定一个二叉树&#xff0c;返回该二叉树的之字形层序遍历&#xff0c;&#xff08;第一层从左向右&#xff0c;下一层从右向左&#xff0c;一直这样交替&#xff09; 例如&#xff1a; 给定的二叉树是{3,9,20,#,#,15…