考试复盘
第一题??是个什么互动哦,直接乱来的( ̄ ̄)σ…(__)ノ|壁
第二题是前几天考过的,所以知道是polyapolyapolya,但是式子推到最后的二项式定理没推对,只能交暴力FFTFFTFFT,问题是暴力FFTFFTFFT都调了很久!!看来这一周还是得重点整一下卷积 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pJWa65au-1616329681876)(file:///C:\PROGRA2\Baidu\BAIDUP1\5039001.0\dict\Default\0423961.PNG)]
第三题的期望,(・。・)突然想起自己还得抓紧整一下期望
已经算是简单的了,毕竟我一个对期望含义并不是很了解的人都找到了式子
但是卡在了后面的暴力找可挑点的时间复杂度上,而且这个好像还有点坑精度??
LYK loves 消消看
待补———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
LYK loves girls
polyapolyapolya定理,何老师简单解释了一下,染色种类数轨道数/序列长度
#include <cstdio>
#include <iostream>
using namespace std;
#define int long long
#define mod 1000000007
#define maxn 100005
int n, k;
int g[maxn], f[maxn], sum[maxn];int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}int gcd( int x, int y ) {if( ! y ) return x;else return gcd( y, x % y );
}signed main() {scanf( "%lld %lld", &n, &k );g[0] = g[1] = sum[0] = 1, sum[1] = 2;for( int i = 2;i <= n;i ++ ) {g[i] = ( sum[i - 1] - ( ( i - k - 2 < 0 ) ? 0 : sum[i - k - 2] ) + mod ) % mod;sum[i] = ( sum[i - 1] + g[i] ) % mod;}int ans = 0;for( int i = 1;i <= n;i ++ ) {int d = gcd( n, i );if( ! f[d] ) {for( int j = 1;j <= min( k + 1, d );j ++ ) f[d] = ( f[d] + j * g[d - j] % mod ) % mod;//1(m-j) 0 0 0 0 0 0 1(i) //乘以j就是因为最后面的0和1可以彼此旋转也是新的方案if( k >= n ) f[d] = ( f[d] + 1 ) % mod;}ans = ( ans + f[d] ) % mod;}ans = ans * qkpow( n, mod - 2 ) % mod;if( k == n ) ans = ( ans - 1 + mod ) % mod;printf( "%lld\n", ans );return 0;
}
LYK loves jumping
ti≠0t_i≠ 0ti=0,设能跳xxx个位置,期望步数和为sumsumsum,则dp[i]=1+sumxdp[i]=1+\frac{sum}{x}dp[i]=1+xsum
ti=0t_i=0ti=0,设能跳到xxx个hhh不等于hih_ihi的位置,期望步数和为sumsumsum,yyy个hhh等于hih_ihi的位置,则dp[i]=x+yx+sumxdp[i]=\frac{x+y}{x}+\frac{sum}{x}dp[i]=xx+y+xsum
#include <cstdio>
#include <algorithm>
using namespace std;
#define maxn 100005
struct node {int id, h, t;
}dot[maxn];
int n;
bool vis[maxn];
double step[maxn], sum[maxn], ans[maxn];bool cmp( node x, node y ) {return ( x.h == y.h ) ? x.t > y.t : x.h < y.h;
}int main() {scanf( "%d", &n );for( int i = 1;i <= n;i ++ ) scanf( "%d", &dot[i].h ), dot[i].id = i;for( int i = 1;i <= n;i ++ ) scanf( "%d", &dot[i].t );sort( dot + 1, dot + n + 1, cmp );for( int i = 1;i <= n;i ++ ) {int l = 1, r = i;while( l <= r ) {int mid = ( l + r ) >> 1;if( dot[mid].h <= dot[i].h - dot[i].t ) l = mid + 1;else r = mid - 1;}if( i == r ) {//说明前i个格子都能跳 包括自己 那么意味着ti=0int j;for( j = i + 1;j <= n;j ++ )//i是特殊类型段的开头第一个 往后找于之等高切tj=0的格子if( dot[j].h == dot[i].h && dot[j].t == dot[i].t );else break;j --;for( int k = i;k <= j;k ++ ) {if( vis[k - 1] || i == 1 ) vis[k] = 1, step[k] = 0;else step[k] = ( sum[i - 1] + j ) / ( i - 1 );vis[k] |= vis[k - 1];sum[k] = sum[k - 1] + step[k];}i = j;continue;}if( vis[r] ) step[i] = 0;else if( ! r ) step[i] = 1;else step[i] = sum[r] / r + 1;vis[i] |= vis[i - 1];sum[i] = sum[i - 1] + step[i];}for( int i = 1;i <= n;i ++ ) ans[dot[i].id] = step[i];for( int i = 1;i <= n;i ++ ) printf( "%.4f ", ans[i] );return 0;
}