Axial symmetry FZU - 2035
题意:
给一个多边形,边平行于x轴或者y,问是否存在对称轴
题解:
将每个点的坐标,以及每个边的中点的坐标,按照顺时针顺序存入,多边形的对称轴一定穿过对应两个点,一共有n个候选对称轴,我们依次枚举判断就行,当枚举一个对称轴时,判断其他点是否关于其对称(判断方法,两个直线是否垂直,中点是否在对称轴上)
当然对称轴的斜率k有可能不存在或者为0,记得特判
思路简单不好写
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 1005;struct Node {double x,y;Node() {}Node(double _x,double _y) {x = _x;y = _y;}
}node[N], p[2*N];
bool equ(double x,double y){if(abs(x-y)<0.0000001)return 1;else return 0;
}
int n;
int main() {int t,cas = 1;scanf("%d",&t);while(t--) {scanf("%d",&n);for(int i = 0; i < n; i++) {scanf("%lf%lf",&node[i].x,&node[i].y);}node[n] = node[0];int tot = 0;p[tot++] = node[0];for(int i = 0; i <= n; i++) {p[tot++] = Node((node[i].x + node[i+1].x) / 2, (node[i].y + node[i+1].y) / 2);p[tot++] = node[i+1];}int a,b;double k1, k2, c;bool ok, flag = false;for(int i = 0; i < n; i++) {ok = true;if( p[i].x == p[i+n].x ) { //如果分母为0,则对称轴垂直于x轴for(int j = 1; j < n; j++) { //对称点 i+j 和 i-j + 2na = (i+j);b = (i-j+2*n);if( (p[a].x + p[b].x)/2 != p[i].x || (p[a].y != p[b].y)) {ok = false;break;}}}else if( p[i].y == p[i+n].y) { //如果分子为0,则对称轴垂直于y轴for(int j = 1; j < n; j++) {a = (i+j);b = (i-j+2*n);if( (p[a].y + p[b].y)/2 != p[i].y || (p[a].x != p[b].x)) {ok = false;break;}}}else{double K,B;K=(p[i].y-p[i+n].y)/(p[i].x-p[i+n].x);B=p[i].y-K*p[i].x;for(int j = 1; j < n; j++) {a = (i+j);b = (i-j+2*n);double k=(p[a].y-p[b].y)/(p[a].x-p[b].x);//y=kx+b --> b=y-k double xx=(p[a].x+p[b].x)/2,yy=(p[a].y+p[b].y)/2; if(equ(k*K,-1)==0||equ(yy,xx*K+B)==0) {ok = false;break;}}}if(ok) {flag = true;break;}}printf("Case %d: ",cas++);if(flag) {printf("YES\n");}else {printf("NO\n");}}return 0;
}