文章目录
- 前言
- 拾得宝典的玄灵大陆
- P2911
- P4316
- P6154
- P1297
- P6862
- 参悟升级的三千界
- P1365
- P1850
- [CF]Crypto Lights
- 打野刷野怪副本
- [AT-abc215G]Colorful Candies 2
前言
其实从去年开始初次接触概率期望后,后面的考试几乎场场见到;而每次都只能敲最原始的暴力,根本不知道从何下手
所以现在开启省选前的最后冲刺修炼,不是说以后一定要做出正解,但至少最基本的入手思路,常见套路,以及方法都要有所了解,不至于做个实实在在的门外汉
,Ծ‸Ծ,
话不多说,开始吧冲冲冲!!(≧▽≦)/
一些计算期望的方法:
- 每一种情况的概率乘以权值再求和
- 总权和除以总方案数
- 列 DPDPDP 转移方程式,一般是问什么期望,就直接定义什么。
某个点的期望是相邻所有点的期望乘以转移过来的概率再 +1+1+1
因为有期望的初始化问题,所以通常都是倒着递推,最终结果作为开始的期望一般为 000
其实列出来的转移式子相当于是一个关于该点期望的一次方程,我们要做的就是找方程的解,所以如果转移式子两边都有该点期望有关的部分,则要合并同类项,然后把系数除为 111
如果发现相互影响(一般为环形转移)就要用到高斯消元解决
拾得宝典的玄灵大陆
P2911
[USACO08OCT]Bovine Bones G
直接设fi,gi,hif_i,g_i,h_ifi,gi,hi表示一个骰子,两个骰子,三个骰子数和为iii的概率
枚举骰子朝上数字的数值,用浮点数暴力DPDPDP即可
权值非常小是可以通过的
#include <cstdio>
#define maxn 100
int s1, s2, s3;
double f[maxn], g[maxn], h[maxn];int main() {scanf( "%d %d %d", &s1, &s2, &s3 ); for( int i = 1;i <= s1;i ++ )f[i] += 1.0 / s1;for( int i = 1;i <= s2;i ++ )for( int j = 1;j <= s1;j ++ )if( ! f[j] ) continue;else g[i + j] += f[j] / s2;for( int i = 1;i <= s3;i ++ )for( int j = 2;j <= s1 + s2;j ++ )if( ! g[j] ) continue;else h[i + j] += g[j] / s3;int pos = 0;for( int i = 3;i <= s1 + s2 + s3;i ++ )if( h[i] > h[pos] ) pos = i;printf( "%d\n", pos );return 0;
}
P4316
绿豆蛙的归宿
期望等于每种情况的概率×加权的求和
此题是有向无环的图,直接根据定义搜索去算即可
#include <cstdio>
#include <vector>
using namespace std;
#define maxn 100005
vector < pair < int, int > > G[maxn];
int n, m;
double ans;void dfs( int u, int len, double f ) {if( u == n ) {ans += len * f;return;}for( int i = 0;i < G[u].size();i ++ ) {int v = G[u][i].first;dfs( v, len + G[u][i].second, f / G[u].size() );}
}int main() {scanf( "%d %d", &n, &m );for( int i = 1, u, v, len;i <= m;i ++ ) {scanf( "%d %d %d", &u, &v, &len );G[u].push_back( make_pair( v, len ) );}dfs( 1, 0, 1 );printf( "%.2f", ans );return 0;
}
P6154
游走
一条路径长度的期望=所有路径的长度和/路径总数
设fif_ifi表示以iii开始的所有路径长度和,gig_igi表示以iii开始的路径数
fi=∑j∈sonifj+gj,gi=1+∑j∈sonigj⇒ans=∑fi∑gif_i=\sum_{j∈son_i}f_j+g_j,g_i=1+\sum_{j∈son_i}g_j\Rightarrow ans=\frac{\sum f_i}{\sum g_i}fi=∑j∈sonifj+gj,gi=1+∑j∈sonigj⇒ans=∑gi∑fi
有向无环图直接记忆化搜索即可
#include <cstdio>
#include <vector>
using namespace std;
#define maxn 100005
#define int long long
#define mod 998244353
vector < int > G[maxn];
int n, m, sumf, sumg;
bool vis[maxn];
int f[maxn], g[maxn];int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}void dfs( int u ) {if( vis[u] ) return;vis[u] = 1, g[u] = 1;for( int i = 0;i < G[u].size();i ++ ) {int v = G[u][i];dfs( v );f[u] = ( f[u] + f[v] + g[v] ) % mod;g[u] = ( g[u] + g[v] ) % mod;}sumf = ( sumf + f[u] ) % mod, sumg = ( sumg + g[u] ) % mod;
}signed main() {scanf( "%lld %lld", &n, &m );for( int i = 1, u, v;i <= m;i ++ ) {scanf( "%lld %lld", &u, &v );G[u].push_back( v );}for( int i = 1;i <= n;i ++ )if( ! vis[i] ) dfs( i );printf( "%lld\n", sumf * qkpow( sumg, mod - 2 ) % mod );return 0;
}
P1297
[国家集训队]单选错位
期望具有线性,E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)
考虑相邻两道题的期望,两道答案的总数情况ai×ai+1a_i\times a_{i+1}ai×ai+1,而aia_iai答案恰好是ai+1a_{i+1}ai+1正确答案的情况数为min(ai,ai+1)min(a_i,a_{i+1})min(ai,ai+1),贡献111的概率则为min(ai,ai+1)ai×ai+1=1max(ai,ai+1)\frac{min(a_i,a_{i+1})}{a_i\times a_{i+1}}=\frac{1}{max(a_i,a_{i+1})}ai×ai+1min(ai,ai+1)=max(ai,ai+1)1
扫一遍直接相加即可
#include <cstdio>
#include <iostream>
using namespace std;
#define maxn 10000005
#define int long long
int n, A, B, C;
double ans;
int a[maxn];signed main() {scanf( "%lld %lld %lld %lld %lld", &n, &A, &B, &C, &a[1] );for( int i = 2;i <= n;i ++ )a[i] = ( a[i - 1] * A + B ) % 100000001;for( int i = 1;i <= n;i ++ )a[i] = a[i] % C + 1;for( int i = 1;i < n;i ++ )ans += 1.0 / max( a[i], a[i + 1] );ans += 1.0 / max( a[1], a[n] );printf( "%.3f\n", ans );return 0;
}
P6862
[RC-03] 随机树生成器
度数是入度加出度,把连向父亲的边叫做点的出边,由儿子连向自己的边叫做点的入边
对于点iii,其父亲的选择个数为[1,i)→i−1[1,i)\rightarrow i-1[1,i)→i−1,所以整棵树的生成个数为(n−1)!(n-1)!(n−1)!
所有方案下,点iii的出边都为111(除根节点111,则其出度和为(n−1)!(n-1)!(n−1)!
入边的话,枚举儿子个数,考虑用组合数算情况数量,发现因为点不一样情况数也不一样,无法统计,走进死胡同了o((⊙﹏⊙))o.
观察这个数据范围,O(nT)O(nT)O(nT)都不行,多半是推式子/预处理O(1)O(1)O(1)计算吧,盲猜一波好吧╮(╯-╰)╭…
哎呀,我是sb
总情况数×概率=事情发生的情况数
总数乘该点做儿子的概率不就等于情况数了吗
ansi=(n−1)!×((∑j=i+1n1j−1)+1)ans_i=(n-1)!\times \bigg(\big(\sum_{j=i+1}^n\frac{1}{j-1}\big)+1\bigg)ansi=(n−1)!×((∑j=i+1nj−11)+1)
预处理阶乘和逆元即可乁[ᓀ˵▾˵ᓂ]ㄏ
#include <cstdio>
#define int long long
#define mod 1000000009
#define maxn 10000000
int T, n, k;
int fac[maxn + 5], inv[maxn + 5];int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}signed main() {fac[0] = inv[0] = inv[1] = 1;for( int i = 1;i <= maxn;i ++ ) fac[i] = fac[i - 1] * i % mod;for( int i = 2;i <= maxn;i ++ ) inv[i] = ( mod - mod / i ) * inv[mod % i] % mod;for( int i = 1;i <= maxn;i ++ ) inv[i] = ( inv[i] + inv[i - 1] ) % mod;scanf( "%lld", &T );while( T -- ) {scanf( "%lld %lld", &n, &k );printf( "%lld\n", ( fac[n - 1] * ( inv[n - 1] - inv[k - 1] + ( k != 1 ) ) % mod + mod ) % mod );} return 0;
}
hdu3853
设 Ei,jE_{i,j}Ei,j :从 (i,j)(i,j)(i,j) 到 (r,c)(r,c)(r,c) 使用能量个数的期望
则有:Ei,j=Ei,j∗pi,j,0+Ei,j+1∗pi,j,1+Ei+1,j∗pi,j,2+2E_{i,j}=E_{i,j}*p_{i,j,0}+E_{i,j+1}*p_{i,j,1}+E_{i+1,j}*p_{i,j,2}+2Ei,j=Ei,j∗pi,j,0+Ei,j+1∗pi,j,1+Ei+1,j∗pi,j,2+2
合并未知数同类相,化系数为 111 :Ei,j=Ei,j+1∗pi,j,1+Ei+1,j∗pi,j,2+21−pi,j,0E_{i,j}=\frac{E_{i,j+1}*p_{i,j,1}+E_{i+1,j}*p_{i,j,2}+2}{1-p_{i,j,0}}Ei,j=1−pi,j,0Ei,j+1∗pi,j,1+Ei+1,j∗pi,j,2+2
#include <cstdio>
#include <cstring>
#define maxn 1005
int n, m;
double E[maxn][maxn];
double p[maxn][maxn][3];int main() {while( ~ scanf( "%d %d", &n, &m ) ) {for( int i = 1;i <= n;i ++ )for( int j = 1;j <= m;j ++ )for( int k = 0;k <= 2;k ++ )scanf( "%lf", &p[i][j][k] );memset( E, 0, sizeof( E ) );for( int i = n;i;i -- )for( int j = m;j;j -- )if( ( i == n and j == m ) or p[i][j][0] == 1 ) continue;else E[i][j] = ( E[i][j + 1] * p[i][j][1] + E[i + 1][j] * p[i][j][2] + 2 ) / ( 1 - p[i][j][0] );printf( "%.3f\n", E[1][1] );}return 0;
}
参悟升级的三千界
P1365
WJMZBMR打osu! / Easy
总方案数为2问号个数2^{问号个数}2问号个数
好像设dpdpdp也转移不动诶<(ToT)>
期望dpdpdp题设计状态都是老套路fif_ifi:前iii次点击的期望得分
重点在于如何正确的转移——废话(;¬_¬)
设lenlenlen:连续ooo字符的期望个数
x
fi=fi−1,len=0f_i=f_{i-1},len=0fi=fi−1,len=0
o
fi=fi−1+(len+1)2−len2,len++f_i=f_{i-1}+(len+1)^2-len^2,len++fi=fi−1+(len+1)2−len2,len++
?
成为x
,o
的概率是相等的,所以将期望/2/2/2,把x
,o
的转移合在一起乘上概率
相当于把分母总方案数拆分到每个具体?
的位置计算
fi=fi−1+(len+1)2−len+fi−1+02=fi−1+len+0.5,len=len+1+02=len+12f_i=\frac{f_{i-1}+(len+1)^2-len+f_{i-1}+0}{2}=f_{i-1}+len+0.5,len=\frac{len+1+0}{2}=\frac{len+1}{2}fi=2fi−1+(len+1)2−len+fi−1+0=fi−1+len+0.5,len=2len+1+0=2len+1
#include <cstdio>
#define maxn 300005
int n;
char s[maxn];
double f[maxn];int main() {scanf( "%d %s", &n, s + 1 );double len = 0;for( int i = 1;i <= n;i ++ ) {switch( s[i] ) {case 'x' : {f[i] = f[i - 1];len = 0;break;}case 'o' : {f[i] = f[i - 1] + len * 2 + 1;len ++;break;}case '?' : {f[i] = f[i - 1] + len + 0.5;len = ( len + 1 ) / 2;break;}}}printf( "%.4f\n", f[n] );return 0;
}
P1850
[NOIP2016 提高组] 换教室
大讨论yyds
dis(i,j):i−jdis(i,j):i-jdis(i,j):i−j的最短距离(floydfloydfloyd即可
f[i][j][k]f[i][j][k]f[i][j][k]:处理到前iii个教室,一共换了jjj次教室,第iii个教室是(1)否(0)选择换教室的最小体力期望
-
第iii个教室不换f[i][j][0]f[i][j][0]f[i][j][0]
-
前一个教室不换f[i−1][j][0]f[i-1][j][0]f[i−1][j][0]
dis(ci−1,ci)dis(c_{i-1},c_i)dis(ci−1,ci)
-
前一个教室要换f[i−1][j][1]f[i-1][j][1]f[i−1][j][1]
-
失败
dis(ci−1,ci)∗(1−ki−1)dis(c_{i-1},c_i)*(1-k_{i-1})dis(ci−1,ci)∗(1−ki−1)
-
成功
dis(di−1,ci)∗ki−1dis(d_{i-1},c_i)*k_{i-1}dis(di−1,ci)∗ki−1
-
f[i][j][0]=min{f[i−1][j][0]+dis(c[i−1],c[i])f[i−1][j][1]+dis(ci−1,ci)∗(1−ki−1)+dis(di−1,ci)∗ki−1f[i][j][0]=min\left\{\begin{array}{l} f[i-1][j][0]+dis(c[i-1],c[i])\\ f[i-1][j][1]+dis(c_{i-1},c_i)*(1-k_{i-1})+dis(d_{i-1},c_i)*k_{i-1}\\ \end{array}\right. f[i][j][0]=min{f[i−1][j][0]+dis(c[i−1],c[i])f[i−1][j][1]+dis(ci−1,ci)∗(1−ki−1)+dis(di−1,ci)∗ki−1
-
-
第iii个教室要换f[i][j][1]f[i][j][1]f[i][j][1]
-
前一个教室不换f[i−1][j−1][0]f[i-1][j-1][0]f[i−1][j−1][0]
-
成功
dis(ci−1,di)∗kidis(c_{i-1},d_i)*k_idis(ci−1,di)∗ki
-
失败
dis(ci−1,ci)∗(1−ki)dis(c_{i-1},c_i)*(1-k_i)dis(ci−1,ci)∗(1−ki)
-
-
前一个教室要换f[i−1][j−1][0]f[i-1][j-1][0]f[i−1][j−1][0]
-
前一个成功,失败
dis(di−1,ci)∗ki−1∗(1−ki)dis(d_{i-1},c_i)*k_{i-1}*(1-k_i)dis(di−1,ci)∗ki−1∗(1−ki)
-
前一个失败,失败
dis(ci−1,ci)∗(1−ki−1)∗(1−ki)dis(c_{i-1},c_i)*(1-k_{i-1})*(1-k_i)dis(ci−1,ci)∗(1−ki−1)∗(1−ki)
-
前一个成功,成功
dis(di−1,di)∗ki−1∗kidis(d_{i-1},d_i)*k_{i-1}*k_idis(di−1,di)∗ki−1∗ki
-
前一个失败,成功
dis(ci−1,di)∗(1−ki−1)∗kidis(c_{i-1},d_i)*(1-k_{i-1})*k_idis(ci−1,di)∗(1−ki−1)∗ki
-
f[i][j][1]=min{f[i−1][j−1][0]+dis(ci−1,di)∗ki+dis(ci−1,ci)∗(1−ki)f[i−1][j−1][1]+dis(di−1,ci)∗ki−1∗(1−ki)+dis(ci−1,ci)∗(1−ki−1)∗(1−ki)+dis(di−1,di)∗ki−1∗ki+dis(ci−1,di)∗(1−ki−1)∗kif[i][j][1]=min\left\{\begin{array}{l} f[i-1][j-1][0]+dis(c_{i-1},d_i)*k_i+dis(c_{i-1},c_i)*(1-k_i)\\ f[i-1][j-1][1]+dis(d_{i-1},c_i)*k_{i-1}*(1-k_i)+dis(c_{i-1},c_i)*(1-k_{i-1})*(1-k_i)+dis(d_{i-1},d_i)*k_{i-1}*k_i+dis(c_{i-1},d_i)*(1-k_{i-1})*k_i\\ \end{array}\right. f[i][j][1]=min{f[i−1][j−1][0]+dis(ci−1,di)∗ki+dis(ci−1,ci)∗(1−ki)f[i−1][j−1][1]+dis(di−1,ci)∗ki−1∗(1−ki)+dis(ci−1,ci)∗(1−ki−1)∗(1−ki)+dis(di−1,di)∗ki−1∗ki+dis(ci−1,di)∗(1−ki−1)∗ki
-
#include <cstdio>
#include <iostream>
using namespace std;
#define inf 1e17
#define maxm 305
#define maxn 2005
#define int long long
int n, m, V, E;
int dis[maxm][maxm];
int c[maxn], d[maxn];
double k[maxn];
double f[maxn][maxn][2];signed main() {scanf( "%lld %lld %lld %lld", &n, &m, &V, &E );for( int i = 1;i <= n;i ++ )scanf( "%lld", &c[i] );for( int i = 1;i <= n;i ++ )scanf( "%lld", &d[i] );for( int i = 1;i <= n;i ++ )scanf( "%lf", &k[i] );for( int i = 1;i <= V;i ++ )for( int j = 1;j <= V;j ++ )dis[i][j] = inf;for( int i = 1, u, v, w;i <= E;i ++ ) {scanf( "%lld %lld %lld", &u, &v, &w );dis[u][v] = dis[v][u] = min( dis[u][v], w );}for( int t = 1;t <= V;t ++ )for( int i = 1;i <= V;i ++ )for( int j = 1;j <= V;j ++ )dis[i][j] = min( dis[i][j], dis[i][t] + dis[t][j] );for( int i = 1;i <= V;i ++ )dis[i][0] = dis[0][i] = dis[i][i] = 0;for( int i = 0;i <= n;i ++ )for( int j = 0;j <= m;j ++ )f[i][j][0] = f[i][j][1] = inf;f[1][0][0] = f[1][1][1] = 0;for( int i = 2;i <= n;i ++ ) {int C = c[i - 1], Ci = c[i], D = d[i - 1], Di = d[i];double K = k[i - 1], Ki = k[i];f[i][0][0] = f[i - 1][0][0] + dis[C][Ci];for( int j = 1;j <= min( i, m );j ++ ) {f[i][j][0] = min( f[i][j][0], min( f[i - 1][j][0] + dis[C][Ci], f[i - 1][j][1] + dis[C][Ci] * ( 1 - K ) + dis[D][Ci] * K ) );f[i][j][1] = min( f[i][j][1], min( f[i - 1][j - 1][0] + dis[C][Di] * Ki + dis[C][Ci] * ( 1 - Ki ), f[i - 1][j - 1][1] + dis[D][Ci] * K * ( 1 - Ki ) + dis[C][Ci] * ( 1 - K ) * ( 1 - Ki ) + dis[D][Di] * K * Ki + dis[C][Di] * ( 1 - K ) * Ki ) );}}double ans = inf;for( int i = 0;i <= m;i ++ )ans = min( ans, min( f[n][i][0], f[n][i][1] ) );printf( "%.2f\n", ans );return 0;
}
[CF]Crypto Lights
E(numberof′1′)=E(option)=E(optionbeforestop)+1E(number\ of\ '1')=E(option)=E(option\ before\ stop)+1E(number of ′1′)=E(option)=E(option before stop)+1
假设操作了iii次,那么每两个111之间至少有k−1k-1k−1个000,也就是说至少有(i−1)(k−1)(i-1)(k-1)(i−1)(k−1)个000
剩下的位置就随机放iii个111,放的顺序不同算不同方案数,需要带阶乘
所以在停止前操作iii次的方案数为Cn−(i−1)(k−1)i×i!C_{n-(i-1)(k-1)}^i\times i!Cn−(i−1)(k−1)i×i!
概率是从nnn个位置中选111个,从n−1n-1n−1个位置中选111个,..................,从n−i+1n-i+1n−i+1个位置中选111个
1n⋅1n−1⋅1n−2⋅⋅⋅1n−i+1=(n−i)!n!\frac{1}{n}·\frac{1}{n-1}·\frac{1}{n-2}···\frac{1}{n-i+1}=\frac{(n-i)!}{n!}n1⋅n−11⋅n−21⋅⋅⋅n−i+11=n!(n−i)!
ans=∑i=1nCn−(i−1)(k−1)i⋅i!⋅(n−i)!n!ans=\sum_{i=1}^n\frac{C_{n-(i-1)(k-1)}^i·i!·(n-i)!}{n!}ans=∑i=1nn!Cn−(i−1)(k−1)i⋅i!⋅(n−i)!
最后加上111即可
#include <cstdio>
#define int long long
#define mod 1000000007
#define maxn 100000
int T, n, k;
int fac[maxn + 5], inv[maxn + 5];int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}int C( int n, int m ) {if( n <= 0 || n < m ) return 0;else return fac[n] * inv[m] % mod * inv[n - m] % mod;
}signed main() {fac[0] = inv[0] = 1;for( int i = 1;i <= maxn;i ++ )fac[i] = fac[i - 1] * i % mod;inv[maxn] = qkpow( fac[maxn], mod - 2 );for( int i = maxn - 1;i;i -- )inv[i] = inv[i + 1] * ( i + 1 ) % mod;scanf( "%lld", &T );while( T -- ) { scanf( "%lld %lld", &n, &k );int ans = 0;for( int i = 1;i <= n;i ++ )ans = ( ans + C( n - ( k - 1 ) * ( i - 1 ), i ) * fac[i] % mod * fac[n - i] % mod * inv[n] % mod ) % mod;printf( "%lld\n", ( ans + 1 ) % mod );}return 0;
}
打野刷野怪副本
[AT-abc215G]Colorful Candies 2
中档题
令CCC表示不同的糖果颜色数,将NNN颗糖果重新离散化颜色1,2,...,C
显然答案与具体糖果的颜色无关,只与每种颜色的个数有关,令nin_ini表示颜色为iii的糖果个数
枚举每一轮要选择的糖果个数KKK
对于每一种颜色,定义XiX_iXi,若选择糖果种有iii颜色,Xi=1X_i=1Xi=1,否则Xi=0X_i=0Xi=0
则KKK糖果中不同颜色种数可以表示为∑i=1CXi\sum_{i=1}^CX_i∑i=1CXi
所求期望为E[∑i=1CXi]E\Big[\sum_{i=1}^CX_i\Big]E[∑i=1CXi],根据期望的线性可加性知道=∑i=1CE[Xi]=\sum_{i=1}^CE\Big[X_i\Big]=∑i=1CE[Xi]
一个颜色出现的期望很简单,出现的方案数///总方案数,出现的方案数===总方案数−-−一次都没出现
E[Xi]=(NK)−(N−niK)(NK)E\Big[X_i\Big]=\frac{\binom{N}{K}-\binom{N-n_i}{K}}{\binom{N}{K}} E[Xi]=(KN)(KN)−(KN−ni)
枚举iii又是O(n)O(n)O(n)的时间,再加上外层的KKK枚举,时间O(n2)O(n^2)O(n2)难以接受
发现其实如果有xxx种颜色的个数都是nin_ini,那么这xxx种颜色的期望可以O(1)O(1)O(1)计算
x∗(NK)−(N−niK)(NK)x*\frac{\binom{N}{K}-\binom{N-n_i}{K}}{\binom{N}{K}} x∗(KN)(KN)−(KN−ni)
那么不同个数就是ni=1,2,...,n_i=1,2,...,ni=1,2,...,,又要满足∑ni=N\sum n_i=N∑ni=N,所以可以知道上界就是根号级别ni=1,2,...,Nn_i=1,2,...,\sqrt Nni=1,2,...,N
#include <map>
#include <cstdio>
using namespace std;
#define int long long
#define mod 998244353
#define maxn 50005
map < int, int > color, cnt;
int fac[maxn], inv[maxn];
int n;int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}void init() {fac[0] = inv[0] = 1;for( int i = 1;i <= n;i ++ ) fac[i] = fac[i - 1] * i % mod;inv[n] = qkpow( fac[n], mod - 2 );for( int i = n - 1;i;i -- ) inv[i] = inv[i + 1] * ( i + 1 ) % mod;
}int C( int n, int m ) {if( n < m ) return 0;else return fac[n] * inv[m] % mod * inv[n - m] % mod;
}signed main() {scanf( "%lld", &n );init();for( int i = 1, x;i <= n;i ++ ) {scanf( "%lld", &x );color[x] ++;//颜色x的出现次数 }for( auto it : color ) cnt[it.second] ++;//颜色出现次数为x的颜色个数for( int i = 1;i <= n;i ++ ) {int ans = 0;for( auto it : cnt ) ans = ( ans + ( C( n, i ) - C( n - it.first, i ) + mod ) % mod * it.second ) % mod;printf( "%lld\n", ans * qkpow( C( n, i ), mod - 2 ) % mod );}return 0;
}