CF961G Partitions
题目描述
Solution
推式子:
AnsAnsAns
=∑wi∑s=0n(n−1s−1){n−sk−1}=\sum w_i\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \left\{ \begin{aligned} n-s \\ k-1 \end{aligned} \right\}=∑wi∑s=0n(n−1s−1){n−sk−1}
把前面的wiw_iwi先扔掉。
=∑s=0n(n−1s−1)∑i=0k−1(−1)i(k−i−1)n−si!(k−i−1)!s=\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \sum_{i=0}^{k-1}\frac{(-1)^i(k-i-1)^{n-s}}{i!(k-i-1)!}s=∑s=0n(n−1s−1)∑i=0k−1i!(k−i−1)!(−1)i(k−i−1)n−ss
=∑i=0k−1(−1)ii!(k−i−1)!∑s=0n(n−1s−1)(k−i−1)n−ss=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}s=∑i=0k−1i!(k−i−1)!(−1)i∑s=0n(n−1s−1)(k−i−1)n−ss
=∑i=0k−1(−1)ii!(k−i−1)!∑s=0n(n−1s−1)(k−i−1)n−s+(n−1s−1)(k−i−1)n−s(s−1)=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}(s-1)=∑i=0k−1i!(k−i−1)!(−1)i∑s=0n(n−1s−1)(k−i−1)n−s+(n−1s−1)(k−i−1)n−s(s−1)
=∑i=0k−1(−1)ii!(k−i−1)!∑s=0n(n−1s−1)(k−i−1)n−s+(n−2s−2)(k−i−1)n−s(n−1)=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-2 \\ s-2 \end{aligned} \right )(k-i-1)^{n-s}(n-1)=∑i=0k−1i!(k−i−1)!(−1)i∑s=0n(n−1s−1)(k−i−1)n−s+(n−2s−2)(k−i−1)n−s(n−1)
=∑i=0k−1(−1)ii!(k−i−1)!(k−i)n−1+(n−1)(k−i)n−2=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(k-i)^{n-1}+(n-1)(k-i)^{n-2}=∑i=0k−1i!(k−i−1)!(−1)i(k−i)n−1+(n−1)(k−i)n−2
=∑i=0k−1(−1)ii!(k−i−1)!+(n+k−i−1)(k−i)n−2=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}+(n+k-i-1)(k-i)^{n-2}=∑i=0k−1i!(k−i−1)!(−1)i+(n+k−i−1)(k−i)n−2
发现是一个卷积形式,直接NumberTheoreticTransformNumber\;\;Theoretic\;\;TransformNumberTheoreticTransform计算即可。
但其实上面的式子还有一个更简单的表达方法:
Ans=∑wi({nk}+(n−1){n−1k})Ans=\sum w_i(\left\{ \begin{aligned} n \\ k \end{aligned} \right\}+(n-1)\left\{ \begin{aligned} n-1 \\ k\;\;\; \end{aligned} \right\}) Ans=∑wi({nk}+(n−1){n−1k})
这个式子可以用组合意义简单解释。
因此总时间复杂度为O(nlgn)O(nlgn)O(nlgn)
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int G=3;
const int Gi=(mods+1)/G;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
int fac[MAXN],inv[MAXN];
int quick_pow(int x,int y)
{int ret=1;for (;y;y>>=1){if (y&1) ret=1ll*ret*x%mods;x=1ll*x*x%mods;}return ret;
}
int upd(int x,int y){ return x+y>=mods?x+y-mods:x+y; }
int solve(int n,int m)
{int ret=0;for (int i=0;i<=m;i++)ret=upd(ret,1ll*(i&1?mods-1:1)*inv[i]%mods*quick_pow(m-i,n)%mods*inv[m-i]%mods);return ret;
}
int main()
{int n=read(),m=read(),sum=0;for (int i=1;i<=n;i++) sum=upd(sum,read());fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;inv[n]=quick_pow(fac[n],mods-2);for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;printf("%d\n",1ll*sum*upd(solve(n,m),1ll*(n-1)*solve(n-1,m)%mods)%mods);return 0;
}