CF961G Partitions

CF961G Partitions

题目描述

Solution

推式子:
AnsAnsAns
=∑wi∑s=0n(n−1s−1){n−sk−1}=\sum w_i\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \left\{ \begin{aligned} n-s \\ k-1 \end{aligned} \right\}=wis=0n(n1s1){nsk1}

把前面的wiw_iwi先扔掉。

=∑s=0n(n−1s−1)∑i=0k−1(−1)i(k−i−1)n−si!(k−i−1)!s=\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \sum_{i=0}^{k-1}\frac{(-1)^i(k-i-1)^{n-s}}{i!(k-i-1)!}s=s=0n(n1s1)i=0k1i!(ki1)!(1)i(ki1)nss
=∑i=0k−1(−1)ii!(k−i−1)!∑s=0n(n−1s−1)(k−i−1)n−ss=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}s=i=0k1i!(ki1)!(1)is=0n(n1s1)(ki1)nss
=∑i=0k−1(−1)ii!(k−i−1)!∑s=0n(n−1s−1)(k−i−1)n−s+(n−1s−1)(k−i−1)n−s(s−1)=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}(s-1)=i=0k1i!(ki1)!(1)is=0n(n1s1)(ki1)ns+(n1s1)(ki1)ns(s1)
=∑i=0k−1(−1)ii!(k−i−1)!∑s=0n(n−1s−1)(k−i−1)n−s+(n−2s−2)(k−i−1)n−s(n−1)=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-2 \\ s-2 \end{aligned} \right )(k-i-1)^{n-s}(n-1)=i=0k1i!(ki1)!(1)is=0n(n1s1)(ki1)ns+(n2s2)(ki1)ns(n1)
=∑i=0k−1(−1)ii!(k−i−1)!(k−i)n−1+(n−1)(k−i)n−2=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(k-i)^{n-1}+(n-1)(k-i)^{n-2}=i=0k1i!(ki1)!(1)i(ki)n1+(n1)(ki)n2
=∑i=0k−1(−1)ii!(k−i−1)!+(n+k−i−1)(k−i)n−2=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}+(n+k-i-1)(k-i)^{n-2}=i=0k1i!(ki1)!(1)i+(n+ki1)(ki)n2

发现是一个卷积形式,直接NumberTheoreticTransformNumber\;\;Theoretic\;\;TransformNumberTheoreticTransform计算即可。

但其实上面的式子还有一个更简单的表达方法:
Ans=∑wi({nk}+(n−1){n−1k})Ans=\sum w_i(\left\{ \begin{aligned} n \\ k \end{aligned} \right\}+(n-1)\left\{ \begin{aligned} n-1 \\ k\;\;\; \end{aligned} \right\}) Ans=wi({nk}+(n1){n1k})

这个式子可以用组合意义简单解释。

因此总时间复杂度为O(nlgn)O(nlgn)O(nlgn)

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int G=3;
const int Gi=(mods+1)/G;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
int fac[MAXN],inv[MAXN];
int quick_pow(int x,int y)
{int ret=1;for (;y;y>>=1){if (y&1) ret=1ll*ret*x%mods;x=1ll*x*x%mods;}return ret;
}
int upd(int x,int y){ return x+y>=mods?x+y-mods:x+y; }
int solve(int n,int m)
{int ret=0;for (int i=0;i<=m;i++)ret=upd(ret,1ll*(i&1?mods-1:1)*inv[i]%mods*quick_pow(m-i,n)%mods*inv[m-i]%mods);return ret;
}
int main()
{int n=read(),m=read(),sum=0;for (int i=1;i<=n;i++) sum=upd(sum,read());fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;inv[n]=quick_pow(fac[n],mods-2);for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;printf("%d\n",1ll*sum*upd(solve(n,m),1ll*(n-1)*solve(n-1,m)%mods)%mods);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/315739.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始在 Windows 上部署 .NET Core 到 Kubernetes

本章节所有代码已上传至&#xff1a;https://github.com/Seanwong933/.NET-Core-on-Kubernetes文末附有本人遇到过的 Docker 和 k8s 的故障排除。本文目标&#xff1a;带领大家在 Kubernetes 上部署一个 .NET Core Api 的单节点集群。后续文章会帮助大家继续深入。安装 Kuberne…

bzoj5093: [Lydsy1711月赛]图的价值

bzoj5093: [Lydsy1711月赛]图的价值 题目描述 Solution 考虑每一个点的贡献&#xff0c;枚举它的度数。 Ansn∗2(n−12)∑i1n−1(n−1i)∗ikAnsn*2^{\tbinom{n-1}{2}}\sum_{i1}^{n-1} \left( \begin{aligned} n-1 \\ i\;\;\; \end{aligned} \right)*i^kAnsn∗2(2n−1​)i1∑…

.NET Core微服务 权限系统+工作流(一)权限系统

一、前言实际上权限系统老早之前我就在一直开发&#xff0c;大概在刚毕业没多久就想一个人写一个系统&#xff0c;断断续续一直坚持到现在&#xff0c;毕竟自己亲动手自写的系统才有收获&#xff0c;本篇仅介绍权限。小小系统上不了台面&#xff0c;望各位大神勿喷。二、系统介…

bzoj#3456. 城市规划

bzoj#3456. 城市规划 题目描述 Solution 用组合意义推很简单。 iii个点的简单无向图个数为2(i2)2^{\tbinom{i}{2}}2(2i​)个。 则其EGFEGFEGF为 G(x)∑i>02(n2)i!xiG(x)\sum_{i>0}\frac{2^{\tbinom{n}{2}}}{i!}x^i G(x)i>0∑​i!2(2n​)​xi 令iii个点的简单无向连…

iNeuOS云操作系统,.NET Core全系打造

一.演示地址演示地址&#xff1a; 进入iNeuOS系统。&#xff08;建议使用chrome浏览器&#xff09;http://192.144.173.38:8081/login.html测试名称&#xff1a;admin测试密码&#xff1a;admin下载《iNeuOS云操作系统演示应用手册》 链接&#xff1a;https://pan.baidu.co…

译 | 你到底有多精通 C# ?

点击上方蓝字关注“汪宇杰博客”文&#xff1a;Damir Arh译&#xff1a;Edi Wang即使是具有良好 C# 技能的开发人员有时候也会编写可能会出现意外行为的代码。本文介绍了属于该类别的几个 C# 代码片段&#xff0c;并解释了令人惊讶的行为背后的原因。Null 值我们都知道&#xf…

uoj#422. 【集训队作业2018】小Z的礼物

uoj#422. 【集训队作业2018】小Z的礼物 题目描述 Solution 所有礼物全部取到的方案数并不好求&#xff0c;因此我们考虑min−maxmin-maxmin−max容斥&#xff0c;转化为第一次取到集合中某一个的期望时间。 令pn∗(m−1)m∗(n−1)pn*(m-1)m*(n-1)pn∗(m−1)m∗(n−1)表示有…

[开源] FreeSql AOP 功能模块 - FreeSql

FreeSql 是一个功能强大的 .NETStandard 库&#xff0c;用于对象关系映射程序(O/RM)&#xff0c;支持 .NETCore 2.1 或 .NETFramework 4.6.1&#xff08;QQ群&#xff1a;4336577&#xff09;。据了解&#xff0c;用户使用很少问问题&#xff0c;编码过程中&#xff0c;因业务阻…

Atcoder ARC062F - AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer

Atcoder ARC062F - AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer 题目描述 简要题意&#xff1a;给定一个有标号的无向图&#xff0c;你可以给每条边染上KKK种颜色之一&#xff0c;求本质不同的图的染色方案&#xff08;两个图本质不同定义为不能通过若干次环…

各大主流K8S服务全方位能力比对

大家好&#xff0c;趁打开流量主的东风&#xff0c;特此贡献一篇长文&#xff0c;分析一下目前国内国外几大著名云厂商的kubernetes服务&#xff0c;以飨诸君。文起之前&#xff0c;先聊态度。 我本人是十分看好k8s的发展的&#xff0c;为何&#xff1f; 理因古往今来&#xff…

CF868F Yet Another Minimization Problem

CF868F Yet Another Minimization Problem 题目描述 Solution 一开始可以很容易地写出一个dpdpdp式子&#xff1a; 设fi,jf_{i,j}fi,j​表示前iii个数分成jjj段的最小代价&#xff0c;有&#xff1a; fi,jmin⁡k1i−1fk,j−1Ck1,if_{i,j}\min_{k1}^{i-1}f_{k,j-1}C_{k1,i} f…

.NET Core 的Generic Host 之Generic Host Builder

通用Host(Generic Host) 与 web Host 不同的地方就是通用Host解耦了Http请求管道&#xff0c;使得通用Host拥有更广的应用场景。比如&#xff1a;消息收发、后台任务以及其他非http的工作负载。这些场景都可以通过使用通用Host拥有横切&#xff08;Cross-cutting&#xff09;的…

loj#2143. 「SHOI2017」组合数问题

loj#2143. 「SHOI2017」组合数问题 题目描述 Solution 考虑转化一下我们要求的东西。 ∑i0n(nkikr)∑i0n(nki)[i≡r(modk)]\sum_{i0}^{n}\binom{nk}{ikr}\sum_{i0}^{n}\binom{nk}{i}[i \equiv r \;\;(mod\;\;k)]∑i0n​(ikrnk​)∑i0n​(ink​)[i≡r(modk)] 这个式子是什么…

.NET Core微服务 权限系统+工作流(二)工作流系统

一、前言接上一篇 .NET Core微服务 权限系统工作流&#xff08;一&#xff09;权限系统 &#xff0c;再来一发工作流&#xff0c;我在接触这块开发的时候一直好奇它的实现方式&#xff0c;翻看各种工作流引擎代码&#xff0c;探究其实现方式&#xff0c;个人总结出来一个核心要…

LuoguP5504 [JSOI2011]柠檬

LuoguP5504 [JSOI2011]柠檬 题目描述 Solution 容易发现一个性质&#xff1a;每一段划分区间的首尾两个元素相同。 因为倘若不相同的话其中至少一个元素也就不产生贡献&#xff0c;将其划分在其他区间一定不会变劣。 因此就可以写出一个简单的O(n2)O(n^2)O(n2)的dpdpdp。 f…

开源分布式Job系统,调度与业务分离-如何创建一个计划HttpJob任务

项目介绍&#xff1a;Hangfire&#xff1a;是一个开源的job调度系统,支持分布式JOB&#xff01;&#xff01;Hangfire.HttpJob 是我针对Hangfire开发的一个组件,该组件和Hangfire本身是独立的。可以独立更新Hangfire版本不影响&#xff01;该组件已被Hangfire官方采纳&#xff…

LuoguP5366 [SNOI2017]遗失的答案

LuoguP5366 [SNOI2017]遗失的答案 题目描述 Solution 可以先简化问题&#xff0c;特判LLL不是GGG倍数的情况。 然后令n⌊nG⌋n\lfloor \frac{n}{G} \rfloorn⌊Gn​⌋,L⌊LG⌋L\lfloor \frac{L}{G} \rfloorL⌊GL​⌋。 现在相当于求出1...n1...n1...n中选择若干数&#xff0c…

Angular 8正式发布!

Angular 团队今天宣布推出 Angular 8 正式版。作为一个期待已久的重大版本更新&#xff0c;Angular 8 为框架、Angular Material 和命令行界面工具 Angular CLI 带来了大量的改进和新功能。团队表示 Angular 8 显著减少了在现代浏览器中应用程序的启动时间、提供了用于定制 CLI…

[JLOI2016]成绩比较

[JLOI2016]成绩比较 题目描述 Solution 考虑dpdpdp。 令fi,jf_{i,j}fi,j​表示前iii个科目中有jjj个人被碾压的方案数。 转移显然为&#xff1a; fi,j∑k≥jfi−1,k∗(kj)∗(n−k−1Ri−(k−j)−1)∗(∑t1Uitn−Ri(Ui−t)Ri−1)f_{i,j}\sum_{k\geq j}f_{i-1,k}*\binom{k}{j}…

.NET Core 3.0 webapi集成Swagger 5.0

在项目中引用Swashbuckle.AspNetCore和Swashbuckle.AspNetCore.Filters两个dll&#xff0c;在Startup中的ConfigureServices相关配置代码如下 两个重点&#xff1a;1、options.DocumentFilter<HiddenApiFilter>();定义那些接口方法被隐藏2、启用oauth2安全授权访问…