loj#2143. 「SHOI2017」组合数问题
题目描述
Solution
考虑转化一下我们要求的东西。
∑i=0n(nkik+r)=∑i=0n(nki)[i≡r(modk)]\sum_{i=0}^{n}\binom{nk}{ik+r}=\sum_{i=0}^{n}\binom{nk}{i}[i \equiv r \;\;(mod\;\;k)]∑i=0n(ik+rnk)=∑i=0n(ink)[i≡r(modk)]
这个式子是什么呢?
这不就是nknknk个物品中选择iii个物品,且i≡r(modk)i \equiv r\;\;(mod\;\;k)i≡r(modk)的方案数吗?
考虑dpdpdp,设fi,jf_{i,j}fi,j表示前iii个物品,选择jjj个的方案数(jjj是在模kkk意义下的),有:
fi,j=fi−1,j+fi−1,(j−1+k)%kf_{i,j}=f_{i-1,j}+f_{i-1,(j-1+k)\%k} fi,j=fi−1,j+fi−1,(j−1+k)%k
这里的kkk只有505050,所以可以直接倍增或者矩阵快速幂优化。
我用了矩阵快速幂(直接贴板子就行啦)
时间复杂度O(k3lg(nk))O(k^3\;lg\;(nk))O(k3lg(nk))
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int MAXN=100005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
int n,mods,k,r;
inline int upd(int x,int y) { return x+y>=mods?x+y-mods:x+y; }
struct Matrix
{int n,A[55][55];void init() { for (int i=0;i<n;i++) A[i][i]=1; }Matrix(int _n=0) { n=_n; memset(A,0,sizeof A); }Matrix operator * (const Matrix &y) {Matrix Ans(n);for (int k=0;k<n;k++)for (int i=0;i<n;i++)for (int j=0;j<n;j++) Ans.A[i][j]=upd(Ans.A[i][j],1ll*A[i][k]*y.A[k][j]%mods);return Ans;}Matrix operator ^ (ll y){Matrix ret(n),x=*this;ret.init();for (;y;y>>=1){if (y&1) ret=ret*x;x=x*x;}return ret;}void print(){for (int i=0;i<n;i++){for (int j=0;j<n;j++) cout<<A[i][j]<<" ";cout<<endl;}}
};
int main()
{n=read(),mods=read(),k=read(),r=read();Matrix f(k);for (int i=0;i<k;i++) f.A[i][i]++,f.A[i][(i+k-1)%k]++;f=f^(1ll*n*k);
// f.print();printf("%d\n",f.A[0][r]);return 0;
}