LG P4899 [IOI2018] werewolf 狼人
Solution
我们发现010101限制长这样子:
∃x(minids−>x≥L&maxidx−>e≤R)→1\exist_x(min_{id_{s->x}}\geq L\;\;\And\;\;max_{id_{x->e}}\leq R) \to 1∃x(minids−>x≥L&maxidx−>e≤R)→1
因此我们只需要快速求出xxx沿着≥L\geq L≥L的编号能走到的点集和沿着≤R\leq R≤R的编号能走到的点集的交即可。
然后上面的东西可以用kruskalkruskalkruskal重构树维护。具体的,对于minidx−>x≥Lmin_{id_{x->x}}\geq Lminidx−>x≥L的情况,我们把一条边(x,y)(x,y)(x,y)的边权设为min(x,y)min(x,y)min(x,y),然后建kruskalkruskalkruskal重构树,这样sss能走到的点集就是从重构树上sss开始跳到的最高的满足ppp的点权≥L\geq L≥L祖先ppp的子树中的所有叶子结点,因此它能走到的点集是在重构树上的一棵子树,也是重构树的dfsdfsdfs序的一段区间[x1,x2][x_1,x_2][x1,x2]。
那么对于maxidx−>e≤Rmax_{id_{x->e}}\leq Rmaxidx−>e≤R也求出一段区间[y1,y2][y_1,y_2][y1,y2]之后,问题就转化为在第一棵树上dfndfndfn为[x1,x2][x_1,x_2][x1,x2]在第二棵树上dfndfndfn为[y1,y2][y_1,y_2][y1,y2]的点存不存在,直接二维数点即可。
时间复杂度O(nlgn)O(nlgn)O(nlgn)。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
PR p[MAXN];
int n,m,q,Ans[MAXN];
struct Enode{ int u,v,c; } eg[MAXN];
struct Qnode{ int x,l,r,id; } Q[MAXN];
struct Binary_Index_Tree
{int s[MAXN];void add(int x) { for (;x<=n;x+=x&(-x)) s[x]++; }int query(int x) { int ans=0; for (;x;x-=x&(-x)) ans+=s[x]; return ans; }
} BIT;
struct Kruskal_Tree
{vector<int> e[MAXN];int num,DFN,f[MAXN],dfn[MAXN],fns[MAXN],dep[MAXN],fa[MAXN][20],Log[MAXN],a[MAXN];int find(int x) { return f[x]==x?f[x]:f[x]=find(f[x]); }void dfs(int x){dfn[x]=DFN+1,DFN+=(x<=n);for (int i=1;i<=Log[dep[x]];i++) fa[x][i]=fa[fa[x][i-1]][i-1];for (auto v:e[x]) fa[v][0]=x,dep[v]=dep[x]+1,dfs(v);fns[x]=DFN;}void build(){num=n,DFN=0;for (int i=1;i<=n+n;i++) f[i]=i,e[i].clear();sort(eg+1,eg+m+1,[&](Enode a,Enode b){ return a.c>b.c; });for (int i=1;i<=m;i++) {int u=find(eg[i].u),v=find(eg[i].v),c=eg[i].c;if (u==v) continue;a[++num]=c;f[num]=f[u]=f[v]=num;e[num].PB(u),e[num].PB(v);}Log[1]=0;for (int i=2;i<=num;i++) Log[i]=Log[i>>1]+1;dfs(num);}int jump(int x,int y){for (int i=Log[dep[x]];i>=0;i--)if (fa[x][i]&&a[fa[x][i]]>=y) x=fa[x][i];return x;}PR query(int x,int y){int z=jump(x,y);return MP(dfn[z],fns[z]);}
} Ts,Te;
VI check_validity(int N,VI X,VI Y,VI S,VI E,VI L,VI R)
{n=N,m=X.size(),q=S.size();for (int i=1,u,v;i<=m;i++) u=X[i-1]+1,v=Y[i-1]+1,eg[i]=(Enode){u,v,min(u,v)};Ts.build();for (int i=1;i<=m;i++) eg[i].c=-max(eg[i].u,eg[i].v);Te.build();for (int i=1;i<=n;i++) p[i]=MP(Ts.dfn[i],Te.dfn[i]);for (int i=1;i<=q;i++){int s=S[i-1]+1,e=E[i-1]+1,l=L[i-1]+1,r=R[i-1]+1;PR x=Ts.query(s,l),y=Te.query(e,-r);Q[i]=(Qnode){x.fi-1,y.fi,y.se,-i};Q[i+q]=(Qnode){x.se,y.fi,y.se,i};
// cout<<"Query:"<<x.fi<<" "<<x.se<<" "<<y.fi<<" "<<y.se<<endl;}sort(p+1,p+n+1,[&](PR a,PR b){ return a.fi<b.fi; });sort(Q+1,Q+q+q+1,[&](Qnode a,Qnode b){ return a.x<b.x; });for (int i=1,nw=0;i<=q+q;i++){while (nw<n&&p[nw+1].fi<=Q[i].x) BIT.add(p[++nw].se);int t=BIT.query(Q[i].r)-BIT.query(Q[i].l-1);if (Q[i].id>0) Ans[Q[i].id]+=t;if (Q[i].id<0) Ans[-Q[i].id]-=t;}VI A; A.clear();for (int i=1;i<=q;i++) A.PB(Ans[i]?1:0);return A;
}