A. Slackline Adventure
考虑枚举每个矩形的长跟宽,再统计这个矩形能在坐标轴上出现几次(同行相邻同列相邻的单独算),然后有如下式子:
2×∑i=1n−1∑j=1m−1(n−i)(m−j)[gcd(i,j)=1][L2≤i2+j2≤R2]2 \times \sum_{i = 1} ^{n - 1} \sum_{j = 1} ^{m - 1}(n - i)(m - j)[\gcd(i, j) = 1][L ^ 2 \leq i ^ 2 + j ^ 2 \leq R ^ 2]\\ 2×i=1∑n−1j=1∑m−1(n−i)(m−j)[gcd(i,j)=1][L2≤i2+j2≤R2]
设F(n,m,T2)=∑i=1n−1∑j=1m−1(n−i)(m−j)[gcd(i,j)=1,i2+j2≤T2]F(n, m, T ^ 2) = \sum\limits\limits_{i = 1} ^{n - 1} \sum\limits_{j = 1} ^{m - 1} (n - i)(m - j)[\gcd(i, j) = 1, i ^ 2 + j ^ 2 \leq T ^ 2]F(n,m,T2)=i=1∑n−1j=1∑m−1(n−i)(m−j)[gcd(i,j)=1,i2+j2≤T2],则ans=F(n,m,R2)−F(n,m,L2−1)ans = F(n,m, R ^ 2) - F(n, m, L ^ 2 - 1)ans=F(n,m,R2)−F(n,m,L2−1)。
∑k=1n−1μ(k)∑i=1n−1k∑j=1m−1k(n−ik)(m−jk)[i2k2+j2k2≤T2]∑k=1n−1μ(k)∑i=1n−1k(n−ik)calc()\sum_{k = 1} ^{n - 1} \mu(k) \sum_{i = 1} ^{\frac{n - 1}{k}} \sum_{j = 1} ^{\frac{m - 1}{k}} (n - ik)(m - jk)[i ^ 2 k ^ 2 + j ^ 2 k ^ 2 \leq T ^ 2]\\ \sum_{k = 1} ^{n - 1} \mu(k) \sum_{i = 1} ^{\frac{n - 1}{k}} (n - ik) calc()\\ k=1∑n−1μ(k)i=1∑kn−1j=1∑km−1(n−ik)(m−jk)[i2k2+j2k2≤T2]k=1∑n−1μ(k)i=1∑kn−1(n−ik)calc()
calc()calc()calc()就是当已知i,k,Ti, k, Ti,k,T,有多少jjj满足i2k2+j2k2≤T2i ^ 2 k ^ 2 + j ^ 2 k ^ 2 \leq T ^ 2i2k2+j2k2≤T2,的m−jkm - jkm−jk求和,整体复杂度O(k×nlogn)O(k \times n \log n)O(k×nlogn),kkk是个比较小的常数
今天VP的时候碰到的,到了一直没看这题,到了最后才发现是个数论题。
说一点点坑点吧,注意函数不能写成f(n,m,T)=∑i=1n−1∑j=1m−1(n−i)(m−j)[gcd(i,j)=1,i2+j2≤T2]f(n, m, T) = \sum\limits\limits_{i = 1} ^{n - 1} \sum\limits_{j = 1} ^{m - 1} (n - i)(m - j)[\gcd(i, j) = 1, i ^ 2 + j ^ 2 \leq T ^ 2]f(n,m,T)=i=1∑n−1j=1∑m−1(n−i)(m−j)[gcd(i,j)=1,i2+j2≤T2],
然后答案是f(n,m,R)−f(n,m,L−1)f(n, m, R) - f(n, m, L - 1)f(n,m,R)−f(n,m,L−1),这样会使满足条件得满足条件的一些数(L−1)2<i2k2+j2k2<L2(L - 1) ^ 2 <i ^ 2 k ^ 2 + j ^ 2 k ^ 2 < L ^ 2(L−1)2<i2k2+j2k2<L2,
没有被删去而算在贡献里了,会导致答案出错,就因为这个调了一晚上,一直不知道哪里错了,,,
#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10, mod = 1e9 + 7;int prime[N], mu[N], cnt, n, m, L, R;bool st[N];inline int add(int x, int y) {return x + y < mod ? x + y : x + y - mod;
}inline int sub(int x, int y) {return x >= y ? x - y : x - y + mod;
}void init() {mu[1] = 1;for (int i = 2; i < N; i++) {if (!st[i]) {mu[i] = -1;prime[++cnt] = i;}for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if (i % prime[j] == 0) {break;}mu[i * prime[j]] = -mu[i];}}
}int calc(int i, int k, long long T) { // i * i * k * k + j * j * k * k <= Tint l = 0, r = (m - 1) / k;while (l < r) {int mid = l + r + 1 >> 1;if (1ll * i * i * k * k + 1ll * mid * mid * k * k > T) {r = mid - 1;}else {l = mid;}}return 1ll * (m - k + m - l * k) * l / 2 % mod;
}int f(long long T) {int ans = 0;for (int k = 1, lim, res; k <= n - 1; k++) {if (mu[k] == 0) {continue;}lim = (n - 1) / k, res = 0;for (int i = 1; i <= lim; i++) {res = add(res, 1ll * (n - i * k) * calc(i, k, T) % mod);}if (mu[k] == 1) {ans = add(ans, res);}else {ans = sub(ans, res);}}ans = 2ll * ans % mod;if (T >= 1) {ans = add(ans, add(1ll * n * (m - 1) % mod, 1ll * (n - 1) * m % mod));}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);init();scanf("%d %d %d %d", &n, &m, &L, &R);printf("%d\n", sub(f(1ll * R * R), f(1ll * L * L - 1)));return 0;
}