准确率、召回率、F1、mAP、ROC、AUC

https://yongyuan-workbench.rhcloud.com/%E4%BF%A1%E6%81%AF%E6%A3%80%E7%B4%A2ir%E7%9A%84%E8%AF%84%E4%BB%B7%E6%8C%87%E6%A0%87%E4%BB%8B%E7%BB%8D-%E5%87%86%E7%A1%AE%E7%8E%87%E3%80%81%E5%8F%AC%E5%9B%9E%E7%8E%87%E3%80%81f1%E3%80%81map%E3%80%81r/

准确率、召回率、F1

信息检索、分类、识别、翻译等领域两个最基本指标是召回率(Recall Rate)准确率(Precision Rate),召回率也叫查全率,准确率也叫查准率,概念公式:

             召回率(Recall)      =  系统检索到的相关文件 / 系统所有相关的文件总数

准确率(Precision) =  系统检索到的相关文件 / 系统所有检索到的文件总数

图示表示如下:

 

 

注意:准确率和召回率是互相影响的,理想情况下肯定是做到两者都高,但是一般情况下准确率高、召回率就低,召回率低、准确率高,当然如果两者都低,那是什么地方出问题了。一般情况,用不同的阀值,统计出一组不同阀值下的精确率和召回率,如下图:

 

 

如果是做搜索,那就是保证召回的情况下提升准确率;如果做疾病监测、反垃圾,则是保准确率的条件下,提升召回。

所以,在两者都要求高的情况下,可以用F1来衡量。

 

[python] view plaincopy

  1. F1 = 2 * P * R / (P + R)

 

 

公式基本上就是这样,但是如何算图1中的A、B、C、D呢?这需要人工标注,人工标注数据需要较多时间且枯燥,如果仅仅是做实验可以用用现成的语料。当然,还有一个办法,找个一个比较成熟的算法作为基准,用该算法的结果作为样本来进行比照,这个方法也有点问题,如果有现成的很好的算法,就不用再研究了。

 

AP和mAP(mean Average Precision)

 

mAP是为解决P,R,F-measure的单点值局限性的。为了得到 一个能够反映全局性能的指标,可以看考察下图,其中两条曲线(方块点与圆点)分布对应了两个检索系统的准确率-召回率曲线

可以看出,虽然两个系统的性能曲线有所交叠但是以圆点标示的系统的性能在绝大多数情况下要远好于用方块标示的系统。

从中我们可以 发现一点,如果一个系统的性能较好,其曲线应当尽可能的向上突出。

更加具体的,曲线与坐标轴之间的面积应当越大。

最理想的系统, 其包含的面积应当是1,而所有系统的包含的面积都应当大于0。这就是用以评价信息检索系统的最常用性能指标,平均准确率mAP其规范的定义如下:(其中P,R分别为准确率与召回率)

ROC和AUC

ROC和AUC是评价分类器的指标,上面第一个图的ABCD仍然使用,只是需要稍微变换。

 

回到ROC上来,ROC的全名叫做Receiver Operating Characteristic。

ROC关注两个指标

True Positive Rate ( TPR )  = TP / [ TP + FN] ,TPR代表能将正例分对的概率

False Positive Rate( FPR ) = FP / [ FP + TN] ,FPR代表将负例错分为正例的概率

在ROC 空间中,每个点的横坐标是FPR,纵坐标是TPR,这也就描绘了分类器在TP(真正的正例)和FP(错误的正例)间的trade-off。ROC的主要分析工具是一个画在ROC空间的曲线——ROC curve。我们知道,对于二值分类问题,实例的值往往是连续值,我们通过设定一个阈值,将实例分类到正类或者负类(比如大于阈值划分为正类)。因此我们可以变化阈值,根据不同的阈值进行分类,根据分类结果计算得到ROC空间中相应的点,连接这些点就形成ROC curve。ROC curve经过(0,0)(1,1),实际上(0, 0)和(1, 1)连线形成的ROC curve实际上代表的是一个随机分类器。一般情况下,这个曲线都应该处于(0, 0)和(1, 1)连线的上方。如图所示。

用ROC curve来表示分类器的performance很直观好用。可是,人们总是希望能有一个数值来标志分类器的好坏。

于是Area Under roc Curve(AUC)就出现了。顾名思义,AUC的值就是处于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的Performance。

AUC计算工具:

http://mark.goadrich.com/programs/AUC/

P/R和ROC是两个不同的评价指标和计算方式,一般情况下,检索用前者,分类、识别等用后者。

参考链接:

http://www.vanjor.org/blog/2010/11/recall-precision/

http://bubblexc.com/y2011/148/

http://wenku.baidu.com/view/ef91f011cc7931b765ce15ec.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313270.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始实现ASP.NET Core MVC的插件式开发(六) - 如何加载插件引用

标题:从零开始实现ASP.NET Core MVC的插件式开发(六) - 如何加载插件引用。 作者:Lamond Lu 地址:https://www.cnblogs.com/lwqlun/p/11717254.html源代码:https://github.com/lamondlu/DynamicPlugins前景回顾•••••简介在前…

小波变换基础

http://blog.csdn.net/GarfieldEr007/article/details/50151845 第十二章 小波变换 目录 1 引言 2 连续小波变换 3 二进小波变换 3.1 Haar变换 4 离散小波变换 4.1 多分辨率分析 4.2 快速小波变换算法 4.3 离散小波变换的…

.Net Core3.0使用gRPC

gRPC是什么gRPC是可以在任何环境中运行的现代开源高性能RPC框架。它可以通过可插拔的支持来有效地连接数据中心内和跨数据中心的服务,以实现负载平衡,跟踪,运行状况检查和身份验证。它也适用于分布式计算的最后一英里,以将设备&am…

单链表逆向

转自:http://blog.csdn.net/heyabo/article/details/7610732 对于单链表的逆置有两种方法可以实现: (1)利用辅助指针 基本思想:在遍历结点过程中,设置辅助指针,用于记录先前遍历的结点。这样依次…

中国.NET开发者峰会特别活动-基于k8s的微服务和CI/CD动手实践报名

2019.11.9 的中国.NET开发者峰会将在上海举办,到目前为止,大会的主题基本确定,这两天就会和大家会面,很多社区的同学基于对社区的信任在我们议题没有确定的情况下已经购票超过了300张,而且分享的主题都来自于社区&…

高斯混合模型学习

转自:http://blog.csdn.net/jojozhangju/article/details/19182013 1.高斯混合模型概述 高斯密度函数估计是一种参数化模型。高斯混合模型(Gaussian Mixture Model, GMM)是单一高斯概率密度函数的延伸,GMM能够平滑地近似任意形状的…

[工具]OFFICE插件管理工具-帮助更好地管理及使用电脑安装过的OFFICE插件

在OFFICE软件的世界中,除了由微软提供的OFFICE软件功能外,还有大量的功能由第三方开发者完成,市面上也存在大量的OFFICE插件供用户选择。使用场景有些插件仅在某个特定场景下才会使用,日常办公过程中,无需开启&#xf…

随机梯度下降的实现细节

http://www.miaoerduo.com/deep-learning/%E5%9F%BA%E4%BA%8Ecaffe%E7%9A%84deepid2%E5%AE%9E%E7%8E%B0%EF%BC%88%E4%B8%8A%EF%BC%89.html 最近看了一篇文章,详细说明了随机梯度下降中随机是在create_imagenet.sh中shuffle实现的。 相关资源: DeepID&am…

那位标榜技术驱动的开发者去哪了?

作者:邹溪源,长沙资深互联网从业者,架构师社区合伙人!一他是一位曾经标榜技术驱动世界的开发者,在他年轻的时候,一段独特的经历,让他对技术充满了兴趣,并在技术这条道路上走了很远很…

图像PCA方法

http://blog.csdn.net/lifeng_math/article/details/50014073 http://blog.csdn.net/lifeng_math/article/details/49993763#旋转不变的-lbp 引言 PCA是Principal Component Analysis的缩写,也就是主成分分析。也是用于降维常用的一中方法。PCA 主要用于数据降维&a…

.NET实时2D渲染入门·动态时钟

前言说来这是个我和我老婆的爱情故事。从小以来“坦克大战”、“魂斗罗”等游戏总令我魂牵梦绕。这些游戏的基础就是 2D实时渲染,以前没意识,直到后来找到了 Direct2D。我的 2D实时渲染入门,是从这个 动态时钟开始的。本文将使用我写的“准游…

ASP.NET Core在 .NET Core 3.1 Preview 1中的更新

.NET Core 3.1 Preview 1现在可用。此版本主要侧重于错误修复,但同时也包含一些新功能。对Razor components的部分类支持将参数传递给顶级组件在HttpSysServer中支持共享队列在SameSite cookies的重大更改除了.NET Core 3.1 Preview版本发布之外,我们还发…

小波变换学习(1)

转自:https://www.zhihu.com/question/22864189/answer/40772083从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常…

.NET Core 3.0 新 JSON API - JsonDocument

JsonDocument类 JsonDocument是基于Utf8JsonReader 构建的。JsonDocument 可分析 JSON 数据并生成只读文档对象模型 (DOM),可对模型进行查询,以支持随机访问和枚举。使用 JsonDocument 分析常规 JSON 有效负载并访问其所有成员比使用 Json.NET 快 2-3 倍…

微软推出 Microsoft.Data.SqlClient,替代 System.Data.SqlClient

背景在 .NET 创建之初,System.Data 框架是一个重要的组件。它为创建 .NET 数据库驱动程序提供了一种方式,类似 Visual Basic 的 ActiveX Data Objects。虽然 API 不一样,但重用了它的名称,所以才有了 ADO .NET 这个绰号。ADO 和 A…

C++ 从文件夹中读取文件

OpenCV从文件夹中读取内含文件方法 参考&#xff1a;http://www.2cto.com/kf/201407/316515.html http://www.it610.com/article/5126146.htm http://blog.csdn.net/adong76/article/details/39432467 windows平台代码&#xff1a; [cpp] view plaincopy #include <io.h&…

你必须知道的容器监控 (1) Docker自带子命令与Weave Scope

本篇已加入《》&#xff0c;可以点击查看更多容器化技术相关系列文章。本篇会介绍几个目前比较常用且流行的容器监控工具&#xff0c;首先我们来看看Docker自带的几个监控子命令&#xff1a;ps、top以及stats&#xff0c;然后是一个功能更强的开源监控工具Weave Scope。# 实验环…

char *与char []

由于指针的灵活性&#xff0c;导致指针能代替数组使用&#xff0c;或者混合使用&#xff0c;这些导致了许多指针和数组的迷惑&#xff0c;因此&#xff0c;刻意再次深入探究了指针和数组这玩意儿&#xff0c;其他类型的数组比较简单&#xff0c;容易混淆的是字符数组和字符指针…

.NET Core ORM 类库Petapoco中对分页Page添加Order By对查询的影响

介绍最近一直在使用PetapocoEntity Framework Core结合开发一套系统。使用EFCore进行Code First编码&#xff0c;使用使用Petapoco进行数据库的常规操作。并且结合PetaPoco.SqlKata的使用&#xff0c;减少了编写SQL语句的工作量&#xff0c;对提升开发效率有很大的帮助。Petapo…

.Net Core 3.0 IdentityServer4 快速入门

一、简介IdentityServer4是用于ASP.NET Core的OpenID Connect和OAuth 2.0框架。将IdentityServer4部署到您的应用中具备如下特点&#xff1a;1&#xff09;、认证服务2&#xff09;、单点登陆3&#xff09;、API访问控制4&#xff09;、联合网关5&#xff09;、专注于定制6&…