【图像恢复】基于交替乘子方法(ADMM)图像恢复算法研究[固定点收敛和应用](Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


💥1 概述

文献来源:

即插即用的ADMM图像恢复算法:固定点收敛和应用

交替方向乘子方法(ADMM)是一种广泛用于解决图像恢复中约束优化问题的算法。在许多有用的特性中,ADMM算法的一个关键特点是其模块化结构,允许将任何现成的图像去噪算法插入到ADMM算法的子问题中。由于其插件式的特性,这种类型的ADMM算法被称为“即插即用ADMM”。即插即用ADMM在最近的一些论文中展示了有希望的实证结果。然而,目前尚不清楚在什么条件下以及使用哪种去噪算法才能保证其收敛性。此外,由于即插即用ADMM使用了特定的变量分割方式,对于常见的高斯和泊松图像恢复问题是否可以进行快速实现也不清楚。本文提出了一种具有可证明的固定点收敛性的即插即用ADMM算法。我们证明了对于满足一种被称为有界去噪器的渐近准则的任何去噪算法,即插即用ADMM在连续方案下收敛到一个固定点。我们还针对超分辨率和单光子成像两个图像恢复问题提出了快速实现。我们将即插即用ADMM与各类最先进的算法进行了比较,并展示了算法的有希望的实验结果。

原文摘要:

Abstract:

Alternating direction method of multiplier (ADMM) is a widely used algorithm for solving constrained optimization problems in image restoration. Among many useful features, one critical feature of the ADMM algorithm is its modular structure, which allows one to plug in any off-the-shelf image denoising algorithm for a subproblem in the ADMM algorithm. Because of the plug-in nature, this type of ADMM algorithms is coined the name “Plug-and-Play ADMM.” Plug-and-Play ADMM has demonstrated promising empirical results in a number of recent papers. However, it is unclear under what conditions and by using what denoising algorithms would it guarantee convergence. Also, since Plug-and-Play ADMM uses a specific way to split the variables, it is unclear if fast implementation can be made for common Gaussian and Poissonian image restoration problems. In this paper, we propose a Plug-and-Play ADMM algorithm with provable fixed-point convergence. We show that for any denoising algorithm satisfying an asymptotic criteria, called bounded denoisers, Plug-and-Play ADMM converges to a fixed point under a continuation scheme. We also present fast implementations for two image restoration problems on superresolution and single-photon imaging. We compare Plug-and-Play ADMM with state-of-the-art algorithms in each problem type and demonstrate promising experimental results of the algorithm.

📚2 运行结果

部分代码:

%add path to denoisers
addpath(genpath('./denoisers/BM3D/'));
addpath(genpath('./denoisers/TV/'));
addpath(genpath('./denoisers/NLM/'));
addpath(genpath('./denoisers/RF/'));

%read test image
z = im2double(imread('./data/House256.png'));

%construct A matrix, deblurring as an example
dim = size(z);
h = fspecial('gaussian',[9 9],1);
A = @(z,trans_flag) afun(z,trans_flag,h,dim);

%reset random number generator
rng(0);

%set noies level
noise_level = 10/255;

%calculate observed image
y = A(z(:),'transp') + noise_level*randn(prod(dim),1);
y = proj(y,[0,1]);
y = reshape(y,dim);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31183.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Python入门到精通》函数详解

「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:小白零基础《Python入门到精通》 函数 1、函数的调用2、函数的参数2.1、变量的就近原则2.2、传递参数2.3、形参和实…

易服客工作室:7个优质WordPress LMS线上教育系统插件比较(优点和缺点)

您是否正在为您的 WordPress 网站寻找最好的 LMS 插件?在线学习管理系统 (LMS) 插件允许您使用 WordPress 创建和运行类似 Udemy 的在线课程。 一个完美的 WordPress LMS 插件包括管理在线课程内容、处理订阅、运行和评分测验、接受付款等功能。 在本文中&#xf…

yolov5代码解读之yolo.py【网络结构】

​这个文件阿对于做模型修改、模型创新有很好大好处。 首先加载一些python库和模块: 如果要执行这段代码,直接在终端输入python yolo.py. yolov5的模型定义和网络搭建都用到了model这个类(也就是以下图片展示的东西):(以前代码没…

【学习日记】【FreeRTOS】调度器函数实现详解

写在前面 本文主要是对于 FreeRTOS 中调度器函数实现的详细解释,代码大部分参考了野火 FreeRTOS 教程配套源码,作了一小部分修改。 一、MSP 和 PSP Cortex-M有两种栈空间,主堆栈和进程堆栈。 MSP 用于系统级别和中断处理的堆栈 MSP 用于保…

linux配置上网 linux adsl拨号上网设置

Linux里面配置ADSL上网是件很麻烦的事。但配置完成之后就能开机自动拨号上网,可谓十分的方便。支持的系统有Redhat,CentOS,SuSE,FreeBSD,Ubuntu等常见的Linux。 工具/原料 ADSL网络,电信,网通,移动等常见宽带。 Linux系统的安装光…

MinGW-W64 下载、安装与配置(支持最新版的GCC,目前 GCC 13.2.0)

文章目录 一、简介1. MinGW 和 MinGW-W64 区别和联系2. MSVCRT 和 UCRT 介绍 二、下载1. 从 sourceforge.net 下载2. 从 github 下载3. 从 镜像站点 下载4. 自己编译 三、安装与配置1. 在线安装2. 离线安装3. 环境配置 四、总结 一、简介 1. MinGW 和 MinGW-W64 区别和联系 M…

LinearAlgebraMIT_8_TheRankOfMatrix

这节课中主要讲解根据秩来判断方程组/矩阵的(solvability)解情况,即通过秩来判断(aumented matrix)增广矩阵的解。我们需要直接求解方程组的解就是求解矩阵的解。 x.1 判断(非齐次线性方程组)Axb是否有解 我们以下面这个方程组为例,它具有3个约束条件和…

《OWASP代码审计》学习——跨站脚本注入(XSS)

一、跨站脚本概述 1.什么是跨站脚本 跨站点脚本(XSS)是一种编码注入漏洞。它通常出现在 web 应用程序中。XSS 使攻击者能够向其他用户浏览的网页中注入恶意内容。XSS 允许攻击者绕过访问控制,它是 OWASP Top10 最常见的漏洞之一。XSS 是网络服务器上的第二大漏洞。…

Linux系统性能调优及调试课:Linux Kernel Printk

🚀返回专栏总目录 文章目录 0、printk 说明1、printk 日志等级设置2、屏蔽等级日志控制机制3、printk打印常用方式4、printk打印格式0、printk 说明 在开发Linux device Driver或者跟踪调试内核行为的时候经常要通过Log API来trace整个过程,Kernel API printk()是整个Kern…

Flume拦截器

实现 Interceptor接口 方法1 是初始化: 方法2和3重载 拦截: 方法3 是关闭: 但是flume是通过内部类创建对象的

餐饮管理系统ssm酒店饭店仓库进销存jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 餐饮管理系统ssm 系统有1权限:管理员 二…

Vue中使用qrcode说明

1.安装 npm i qrcode1.5.3 2.导入 import QRCode from qrcode 3.转换 说明:拿到服务器传来的字符串,转换成base64,然后通过img标签展示。 // 字符串转成二维码 let result await this.$API.reqPayInfo(this.orderId); 总结:

Java一般用于postgis空间数据库通用的增删查改sql命令

目录 1 增加 2 删除 3 查询 4 更新 "public"."JGSQGW_Geo"为某模式下得表 一般postgrel有这样的设计模式 1 增加 #前端绘制出的数据插入 INSERT INTO "public"."JGSQGW_Geo" ( "geom","gridone","gridon…

集合Collection-List-ArrayList学习

一、集合 集合是数据容器。相较于数组集合具有以下几个特点: 数组一旦创建,长度不可改变。集合的长度会自动扩容。集合具有很多数组没有的功能函数API数组元素的存储特点单一,不同的集合有不同的存储特点。 1. Collection顶层接口 Collect…

zustand:基于 Flux 模型实现的小型、快速和可扩展的状态管理

目录 ReactStep 1:安装Step 2:Store 初始化Step3:Store 绑定组件,就完成了!效果图 VueStep 1: 安装Step 2: Store 初始化Step 3: Store 绑定组件,就完成了!效果图 微前端为什么你需要 zustand-pub ?安装ste…

Centos8上加速git clone

首先通过命令获取域名对应的IP地址 [rootggbond ~]# nslookup github.global.ssl.fastly.net [rootggbond ~]# nslookup github.com 之后如上获取到的IP地址 以IP-域名的格式加入到hosts文件中 [rootggbond ~]# vim /etc/hosts Centos8上更新DNS缓存 [rootggbond ~]# nscd -…

R语言5_安装Giotto

环境Ubuntu22/20, R4.1. 已开启科学上网。 第一步,更新服务器环境,进入终端,键入如下命令, apt-get update apt install libcurl4-openssl-dev libssl-dev libxml2-dev libcairo2-dev libgtk-3-dev libhdf5-dev libmagick9-dev …

opencv基础55-获取轮廓的特征值及示例

轮廓自身的一些属性特征及轮廓所包围对象的特征对于描述图像具有重要意义。本节介绍几个轮廓自身的属性特征及轮廓所包围对象的特征。 宽高比 可以使用宽高比(AspectRation)来描述轮廓,例如矩形轮廓的宽高比为: 宽高比 宽度&am…

消息队列比较

、ActiveMQ 优点:单机吞吐量万级,时效性ms级,可用性高,基于主从架构实现高可用性,消息可靠性较低的概率丢失数据。 缺点:官方社区现在对ActiveMQ5.X维护越来越少了,高吞吐量场景较少使用。 2、K…

htmlCSS-----案例展示

目录 前言 作品效果 html代码 CSS代码 图片资源 前言 在学习html过程中我们要试着去写写一些案例,通过这些案例让我们更加熟悉代码以及丰富我们的经验,下面是我个人写的一个案例,代码和图片也给出了大家,你们可以参考参考。…