完整的代码可以参考:https://files.cnblogs.com/files/lijiale/chatglm2-6b.zip?t=1691571940&download=true
# %% [markdown]
# # 微调前# %%
model_path = "/mnt/workspace/ChatGLM2-6B/chatglm2-6b"from transformers import AutoTokenizer, AutoModel
# 载入Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)from IPython.display import display, Markdown, clear_outputdef display_answer(model, query, history=[]):for response, history in model.stream_chat(tokenizer, query, history=history):clear_output(wait=True)display(Markdown(response))return historymodel = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
model = model.eval()display_answer(model, "类型#上衣\*材质#牛仔布\*颜色#白色\*风格#简约\*图案#刺绣\*衣样式#外套\*衣款式#破洞")# %% [markdown]
# # 微调后的效果
# # %%
import os
import torch
from transformers import AutoConfig
from transformers import AutoTokenizer, AutoModelmodel_path = "/mnt/workspace/ChatGLM2-6B/chatglm2-6b"tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128)
model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join("/mnt/workspace/ChatGLM2-6B/ptuning/output/adgen-chatglm2-6b-pt-128-2e-2/checkpoint-3000", "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():if k.startswith("transformer.prefix_encoder."):new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)model = model.half().cuda()
model.transformer.prefix_encoder.float()
model = model.eval()response, history = model.chat(tokenizer, "类型#上衣\*材质#牛仔布\*颜色#白色\*风格#简约\*图案#刺绣\*衣样式#外套\*衣款式#破洞", history=[])
print(response)# %%
!pip install torchkeras# %%
#导入模块
import numpy as np
import pandas as pd
import torch
from torch import nn
from torch.utils.data import Dataset,DataLoader from argparse import Namespace
cfg = Namespace()from argparse import Namespace
cfg = Namespace()#dataset
cfg.prompt_column = 'prompt'
cfg.response_column = 'response'
cfg.history_column = None
cfg.source_prefix = '' #添加到每个prompt开头的前缀引导语cfg.max_source_length = 128
cfg.max_target_length = 128#model
cfg.model_name_or_path = '/mnt/workspace/ChatGLM2-6B/chatglm2-6b' #远程'THUDM/chatglm-6b'
cfg.quantization_bit = None #仅仅预测时可以选 4 or 8 #train
cfg.epochs = 100
cfg.lr = 5e-3
cfg.batch_size = 1
cfg.gradient_accumulation_steps = 16 #梯度累积import transformers
from transformers import AutoModel,AutoTokenizer,AutoConfig,DataCollatorForSeq2Seqconfig = AutoConfig.from_pretrained(cfg.model_name_or_path, trust_remote_code=True)tokenizer = AutoTokenizer.from_pretrained(cfg.model_name_or_path, trust_remote_code=True)model = AutoModel.from_pretrained(cfg.model_name_or_path,config=config,trust_remote_code=True).half() #先量化瘦身
if cfg.quantization_bit is not None:print(f"Quantized to {cfg.quantization_bit} bit")model = model.quantize(cfg.quantization_bit)#再移动到GPU上
model = model.cuda();# 通过注册jupyter魔法命令可以很方便地在jupyter中测试ChatGLM
from torchkeras.chat import ChatGLM
chatglm = ChatGLM(model,tokenizer)# %%
%%chatglm
类型#上衣\*材质#牛仔布\*颜色#白色\*风格#简约\*图案#刺绣\*衣样式#外套\*衣款式#破洞# %%
#定义一条知识样本~
import json
keyword = '梦中情炉'description = '''梦中情炉一般指的是炼丹工具torchkeras。
这是一个通用的pytorch模型训练模版工具。
torchkeras是一个三好炼丹炉:好看,好用,好改。
她有torch的灵动,也有keras的优雅,并且她的美丽,无与伦比。
所以她的作者一个有毅力的吃货给她取了一个别名叫做梦中情炉。'''#对prompt使用一些简单的数据增强的方法,以便更好地收敛。
def get_prompt_list(keyword):return [f'{keyword}', f'你知道{keyword}吗?',f'{keyword}是什么?',f'介绍一下{keyword}',f'你听过{keyword}吗?',f'啥是{keyword}?',f'{keyword}是何物?',f'何为{keyword}?',]# data =[{'prompt':x,'response':description} for x in get_prompt_list(keyword) ]
data = []
with open("/mnt/workspace/ChatGLM2-6B/ptuning/AdvertiseGen_Simple/train.json", "r", encoding="utf-8") as f:lines = f.readlines()for line in lines:d = json.loads(line)data.append({'prompt':d['content'],'response':d['summary']})dfdata = pd.DataFrame(data)
display(dfdata) # %%
import datasets
#训练集和验证集一样
ds_train_raw = ds_val_raw = datasets.Dataset.from_pandas(dfdata)# %%
def preprocess(examples):max_seq_length = cfg.max_source_length + cfg.max_target_lengthmodel_inputs = {"input_ids": [],"labels": [],}for i in range(len(examples[cfg.prompt_column])):if examples[cfg.prompt_column][i] and examples[cfg.response_column][i]:query, answer = examples[cfg.prompt_column][i], examples[cfg.response_column][i]history = examples[cfg.history_column][i] if cfg.history_column is not None else Noneprompt = tokenizer.build_prompt(query, history)prompt = cfg.source_prefix + prompta_ids = tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True,max_length=cfg.max_source_length)b_ids = tokenizer.encode(text=answer, add_special_tokens=False, truncation=True,max_length=cfg.max_target_length)context_length = len(a_ids)input_ids = a_ids + b_ids + [tokenizer.eos_token_id]labels = [tokenizer.pad_token_id] * context_length + b_ids + [tokenizer.eos_token_id]pad_len = max_seq_length - len(input_ids)input_ids = input_ids + [tokenizer.pad_token_id] * pad_lenlabels = labels + [tokenizer.pad_token_id] * pad_lenlabels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]model_inputs["input_ids"].append(input_ids)model_inputs["labels"].append(labels)return model_inputsds_train = ds_train_raw.map(preprocess,batched=True,num_proc=4,remove_columns=ds_train_raw.column_names
)ds_val = ds_val_raw.map(preprocess,batched=True,num_proc=4,remove_columns=ds_val_raw.column_names
)data_collator = DataCollatorForSeq2Seq(tokenizer,model=None,label_pad_token_id=-100,pad_to_multiple_of=None,padding=False
)dl_train = DataLoader(ds_train,batch_size = cfg.batch_size,num_workers = 2, shuffle = True, collate_fn = data_collator )
dl_val = DataLoader(ds_val,batch_size = cfg.batch_size,num_workers = 2, shuffle = False, collate_fn = data_collator )for batch in dl_train:break
print(len(dl_train))# %%
!pip install peft# %%
from peft import get_peft_model, AdaLoraConfig, TaskType#训练时节约GPU占用
model.config.use_cache=Falsemodel.supports_gradient_checkpointing = True #
model.gradient_checkpointing_enable()
model.enable_input_require_grads()peft_config = AdaLoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False,r=8,lora_alpha=32, lora_dropout=0.1,target_modules=["query", "value"]
)peft_model = get_peft_model(model, peft_config)peft_model.is_parallelizable = True
peft_model.model_parallel = Truepeft_model.print_trainable_parameters()# %%
from torchkeras import KerasModel
from accelerate import Accelerator class StepRunner:def __init__(self, net, loss_fn, accelerator=None, stage = "train", metrics_dict = None, optimizer = None, lr_scheduler = None):self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stageself.optimizer,self.lr_scheduler = optimizer,lr_schedulerself.accelerator = accelerator if accelerator is not None else Accelerator() if self.stage=='train':self.net.train() else:self.net.eval()def __call__(self, batch):#losswith self.accelerator.autocast():loss = self.net(input_ids=batch["input_ids"],labels=batch["labels"]).loss#backward()if self.optimizer is not None and self.stage=="train":self.accelerator.backward(loss)if self.accelerator.sync_gradients:self.accelerator.clip_grad_norm_(self.net.parameters(), 1.0)self.optimizer.step()if self.lr_scheduler is not None:self.lr_scheduler.step()self.optimizer.zero_grad()all_loss = self.accelerator.gather(loss).sum()#losses (or plain metrics that can be averaged)step_losses = {self.stage+"_loss":all_loss.item()}#metrics (stateful metrics)step_metrics = {}if self.stage=="train":if self.optimizer is not None:step_metrics['lr'] = self.optimizer.state_dict()['param_groups'][0]['lr']else:step_metrics['lr'] = 0.0return step_losses,step_metricsKerasModel.StepRunner = StepRunner #仅仅保存lora相关的可训练参数
def save_ckpt(self, ckpt_path='checkpoint', accelerator = None):unwrap_net = accelerator.unwrap_model(self.net)unwrap_net.save_pretrained(ckpt_path)def load_ckpt(self, ckpt_path='checkpoint'):self.net = self.net.from_pretrained(self.net.base_model.model,ckpt_path)self.from_scratch = FalseKerasModel.save_ckpt = save_ckpt
KerasModel.load_ckpt = load_ckpt # %%
optimizer = torch.optim.AdamW(peft_model.parameters(),lr=cfg.lr)
keras_model = KerasModel(peft_model,loss_fn = None,optimizer=optimizer)
ckpt_path = 'single_chatglm3'# %%
keras_model.fit(train_data = dl_train,val_data = dl_val,epochs=100,patience=20,monitor='val_loss',mode='min',ckpt_path = ckpt_path,mixed_precision='fp16',gradient_accumulation_steps = cfg.gradient_accumulation_steps)# %%
#验证模型
from peft import PeftModel
ckpt_path = 'single_chatglm3'
model_old = AutoModel.from_pretrained(cfg.model_name_or_path,load_in_8bit=False, trust_remote_code=True)
peft_loaded = PeftModel.from_pretrained(model_old,ckpt_path).cuda()
model_new = peft_loaded.merge_and_unload() #合并lora权重chatglm = ChatGLM(model_new,tokenizer,max_chat_rounds=20) #支持多轮对话,可以从之前对话上下文提取知识。# %%
chatglm = ChatGLM(model_new,tokenizer,max_chat_rounds=0) #支持多轮对话,可以从之前对话上下文提取知识。# %%
%%chatglm
类型#上衣\*材质#牛仔布\*颜色#白色\*风格#简约\*图案#刺绣\*衣样式#外套\*衣款式#破洞# %%
save_path = "chatglm2-6b-adgen"
model_new.save_pretrained(save_path, max_shard_size='2GB')
tokenizer.save_pretrained(save_path)# %%
!cp ChatGLM2-6B/chatglm2-6b/*.py chatglm2-6b-adgen/# %%
from transformers import AutoModel,AutoTokenizermodel_name = "chatglm2-6b-adgen"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name,trust_remote_code=True).half().cuda()
response,history = model.chat(tokenizer,query = '你听说过梦中情炉吗?',history = [])
print(response)# %%
response,history = model.chat(tokenizer,query = '类型#上衣\*材质#牛仔布\*颜色#白色\*风格#简约\*图案#刺绣\*衣样式#外套\*衣款式#破洞',history = [])
print(response)# %%