前言
Redis是目前非常流行的缓存数据库啦,其中一个主要作用就是为了避免大量请求直接打到数据库,以此来缓解数据库服务器压力;用上缓存难道就高枕无忧了吗?no,no,no,没有这么完美的技术, 缓存穿透、缓存雪崩、缓存击穿这些问题都得好好聊聊。
正文
1. 缓存穿透
1.1 简要描述
缓存穿透是指查找的数据在缓存和数据库中都不存在,导致每一次请求数据从缓存中都获取不到,而将请求打到数据库服务器,但数据库中也没有对应的数据,最后每一次请求都到数据库;如果在高并发场景或有人恶意攻击,就会导致后台数据库服务器压力增大,最终系统可能崩掉。来个直接点的图:
简要说明:
缓存Redis服务器颜色说明:绿色块代表有缓存数据,粉色块代表缓存中没有数据;绿色箭头代表直接从缓存中获取数据;黄色箭头代表穿过缓存从数据库中查数据,但不一定有。
流程大概如下:
大量客户端发起大量请求到服务器;
服务器代码逻辑将先经过缓存,如果有缓存数据(绿色部分),直接从缓存中获取数据数据返回;如果缓存中没有数据(粉色部分),请求就会直接打到数据库服务器(如黄色箭头)。
如果存在大量无缓存数据的请求,最终数据库将因为过大压力而崩掉,导致系统不可用。
1.2 常用解决措施
缓存空值:如果没有在数据库中获取到数据,可以将其对应键的空值进行缓存,并设置较短过期时间;
优点:在过期时间内直接通过缓存返回空值;从而避免数据库压力;
缺点:
消耗Redis内存:如果是攻击者换着非常规的键值请求,如果每次都缓存到Redis中,大量的空数据也占内存空间;
数据不一致:如果是正常数据,刚开始没有数据,然后将空值进行缓存,并设置短暂的过期时间;如果在过期时间内正常维护了对应的数据,此时取到值仍是空,并没有去数据库中获取新维护数据,导致数据获取不一致。
布隆过滤器
加一层过滤器进行拦截,判断请求对应的键是否在过滤器中,如果不在就直接返回,不去请求数据库,也不用缓存空值。而布隆过滤器采用bit位的形式标识对应键(每个键进行Hash过后都会得到具体的位置)是否存在,可以用极少的空间标识超大量的数据。
缺点:布隆过滤器可以判断数据一定不在过滤器中,而对于存在的判断有误判率,因为Hash算法存在冲突的情况。
1.3 布隆过滤器
布隆过滤器不是专门用来针对缓存穿透的,它的应用场景很多,比如避免邮件重发、爬虫软件重爬、视频推送重复等;可能有的小伙伴还不明白为什么可以这么用,那先简单说说布隆过滤器的原理。
瞅个图先:
简要说明:
先来一个Key,后续需要判断Key是否存在(这里Key可以是任意想存的数据,比如用户ID、视频标识等);
将Key进行多次hash计算;每次的hash算法得到的结果都不一样;上图只画了三次hash计算,其实实际根据误判率不一样,hash次数就不一样;
将hash结果对应下标索引的bit位改为1,表示存在;上图经过三次hash,结果分别为2、5、9,则将对应的位置改为1;
如果需要判断Key是否在过滤器中,同样需进行多次hash计算,上图为三次,将计算出来的结果作为索引去获取对应的标识,三次中只要有一次对应位置的值为0,那就证明Key不存在过滤器中。如果是判定存在,则三次的结果对应位置的值应该都为1,不过这样是有误判可能,因为不同的Key,hash的结果有可能是一样的,从而就导致设置对应索引位时就会有冲突,如下图;
先假设Key1、Key2经过三次hash的结果一样(实际场景是存在的),倘若Key1先来都将2、5、9位置的值设为1,那Key2进来判断存在时,由于hash的结果一样,从而就误判为在过滤器中,其实不存在;
误判率在布隆过滤器中是可以控制,如果需要降低误判率,那就多进行几次hash计算,那位置相同的概率就降低啦;但这样会影响效率,另外也会有内存的额外开销,hash次数多,需要标识的位就越多。就算有误判率,也很小,在绝大多数场景下可接受。
1.4 布隆过滤器的使用
既然说Redis,就说Redis的布隆过滤器吧,其实小伙伴可以根据自己的需求利用Redis的bitmap实现。那有没有造好的轮子呢,当然有,在Redis4.0开始就有一个布隆过滤器的组件,开箱即用,当然也有一些其他大佬封装的,基于内存的,基于分布式都有。这里简单说说Redis布隆过滤器的插件,个人觉得挺好的,推荐哦。
官方文档地址:https://oss.redislabs.com/redisbloom/
我这面是用centos进行演示,主要步骤如下:
如果没有git的需要安装一下;如果不用git就去下载代码压缩包;
yum install -y git
把redis布隆过滤器的源码搞下来,这里用git;也可以通过下载的方式;
git clone https://github.com/RedisLabsModules/redisbloom.git
进入代码目录进行make(生成redisbloom.so文件),如果make命令找不到,就需要安装VC++编译相关的包;
cd redisbloom make
在Redis配置文件中配置加载redisbloom插件,然后重启就可以用啦;也可以启动的时候指定加载插件运行;
配置文件方式:在配置文件中添加如下配置,需要指定redisbloom.so具体的文件位置。
然后指定配置文件启动即可;
./redis-server redis.conf
启动时指定模块运行方式:
./redis-server --loadmodule ./redisbloom.so
简单使用
命令使用和常规命令一样啦,就不需要我再写程序了吧,如果非要的话,那就简单说两句:
A.将需要判断数据保存在过滤器中,比如所有的用户id;
B.当请求过来时就先从过滤器中判断有无数据,没有直接返回,不去缓存,也不去数据库;
C.如果有新添加的用户,需要将新的用户id放到过滤器中;
关于Redis布隆过滤器还有一些命令没说,小伙伴可以去逛逛官网。有小伙伴肯定会问,不用这个插件行吗,当然行啊,可以自己实现嘛,不过有些小伙伴有封装好的包啦,有基于内存的,也有基于Redis的,如下图:
代码我就不上了,剩下的就留给小伙伴啦。
2. 缓存雪崩
1.1 简要描述
缓存雪崩是指突然缓存层不可用,导致大量请求直接打到数据库,最终由于数据库压力过大可能导致系统崩掉。缓存层不可用指以下两方面:
缓存服务器宕机,系统将请求打到数据库;
缓存数据突然大范围集中过期失效,导致大量请求打到数据库重新加载数据;
如图:
简要说明:
缓存Redis服务器颜色说明:绿色块代表有缓存数据,粉色块代表缓存中没有数据;白色块代表大范围失效的缓存数据,绿色箭头代表直接从缓存中获取数据;黄色箭头代表穿过缓存从数据库中查数据。
流程大概如下:
大量客户端发起大量请求到服务器;
服务器代码逻辑将先经过缓存,如果有缓存数据(绿色部分),直接从缓存中获取数据数据返回;如果缓存过期(白色块部分),请求就会直接打到数据库服务器(如黄色箭头)。
如果存在大量热数据的请求,但热数据又大范围过期,最终数据库将因为过大压力崩掉,导致系统不可用。
1.2 常用解决措施
缓存预热:在高峰期还没到来时,提前将热数据加载到缓存中,避免高峰期来临时数据库压力过大。
均匀设置过期时间:针对不同的热点数据,将过期时间加上一个随机值,让过期时间不集中在一个点,从而减小很大部分数据库压力;
多级缓存:除了使用Redis缓存,还可以根据业务增加一些热点数据的其他缓存,比如内存缓存,可以将各级的缓存有效期分开,这种方式也能缓解数据库的压力;
限流、降级:如果压力过大,避免把系统搞崩,可以增加一些限流手段,不管是中间件还是消息队列等,主要保证系统的可用。
加互斥锁:目的就是加锁独占操作,让一个操作向缓存中重新加载数据,让请求操作等待,其实这样的体验不好,慎用。如果要用,要超级注意锁的性能和稳定性。
对于缓存层整体崩掉的情况:使用高可用架构,比如之前说到的主从复制、哨兵、集群,根据需求进行对应架构,保证缓存层不崩掉。
3. 缓存击穿
1.1 简要描述
缓存击穿是指在超级热点数据突然过期,导致针对超级热点的数据请求在过期期间直接打到数据库,这样数据库服务器会因为某一超热数据导致压力过大而崩掉。
超热数据:比如秒杀时的数据,某宝、某东、某多多这种平台的数据如果在秒杀时间段失效,请求量足矣让数据库崩掉。
如图:
简要说明:
缓存Redis服务器颜色说明:绿色块代表有缓存数据,粉色块代表缓存中没有数据;白色圈代表超级热点缓存数据过期失效,绿色箭头代表直接从缓存中获取数据;黄色箭头代表穿过缓存从数据库中查数据。
流程大概如下:
大量客户端发起大量请求到服务器;
服务器代码逻辑将先经过缓存,如果有缓存数据(绿色部分),直接从缓存中获取数据数据返回;如果超热缓存数据过期(白色圈部分),请求就会直接打到数据库服务器(如黄色箭头)。
超级热点数据过期失效,如秒杀数据,如果在秒杀时段失效,最终数据库将因为过大压力崩掉,导致系统不可用。
注:这个只是针对超热点数据,而不是大范围数据。
1.2 常用解决措施
热点数据不过期:像这种超热数据就设置永不过期。避免过期失效让数据库压力过大而崩。
加互斥锁:目的就是加锁,然后向缓存中重新加载数据,让请求等待,其实这样的体验不好,慎用。如果要用,要超级注意锁的性能和稳定性。
总结
缓存穿透、缓存雪崩、缓存击穿不管是哪个问题,其主要原因还是在缓存层没有命中,将请求直接打到数据库啦,最终导致数据库压力过大,系统不可用。小伙伴根据系统需要进行问题处理,没有完美的解决方案,但总会有一种适合需求的方案,解决业务问题才是真正目的。
今天没有上代码,相信小伙伴都能根据解决措施写出对应的代码,分布式锁可能稍微有点难搞,下次抽时间给大家安排上。
关于Redis系列,下篇说说Lua脚本就算初步完成啦,剩下的就是实战的总结啦,在项目的使用过程中,如果有好的方案和棘手的问题都会和小伙伴分享。接下来数据库优化系列即将开启,主要针对MySql。