基于关系有向图的知识推理2022ACM 8.9

基于关系有向图的知识推理

  • 摘要
  • 介绍
  • 相关工作
    • 基于路径的方法
    • 基于GNN的方法
  • 关系有向图
  • RED-GCN
  • 实验

在这里插入图片描述

摘要

知识图推理旨在从已有的知识中推断出新的事实。基于关系路径的方法在文献中显示出较强的可解释性和归纳推理能力。然而,在KG中 捕获复杂拓扑(Capturing complex topology) 时,路径是有限的。本文引入了一种新的关系结构,即 由重叠关系路径组成的关系有向图(r-digraph) 来捕获KG的结构信息。由于有向图表现出比路径更复杂的结构,因此在r-digraph上构建和学习是具有挑战性的。在这里,我们提出了一种图神经网络,即RED-GNN,通过使用GNN的变体学习关系有向图来解决上述挑战。明确地RED-GNN递归编码多个具有共享边的r-digraph,并通过依赖于查询的注意力权重来选择强相关边。我们展示了在用看不见的实体推理KG和通过r-digraph完成KG基准、RED-GNN的效率以及在r-digraph可解释的依赖性方面的显著收获。

知识图谱中实体和概念通过关系连接在一起。拓扑结构是指这些连接关系的模式和形式。
在知识图谱中,有时候实体之间的关系非常复杂,涉及多个层次和路径。"Capturing complex topology"的目标是能够准确地表示和捕捉这些复杂的连接关系。这可以包括以下方面:
1.多层级关系:有些关系可能涉及多个层级,例如,实体A与实体B通过实体C相连,而实体C又与实体D相连。在捕捉复杂拓扑结构时,需要能够表示和处理这种多层级的关系。
2.循环关系:有时候在知识图谱中存在循环关系,也就是实体之间存在循环的连接路径。例如,实体A通过关系R1与实体B相连,而实体B又通过关系R2与实体A相连。在建模复杂拓扑结构时,需要能够处理这种循环关系。
3.多路径连接:有时候两个实体之间可以通过多个不同的路径相连。例如,实体A通过关系R1和关系R2分别与实体B相连。在捕捉复杂拓扑结构时,需要能够同时表示和利用多个路径。
为了实现对复杂拓扑结构的捕捉,可以使用图神经网络(Graph Neural Networks)等技术。

在知识图谱中,实体之间的关系可以通过多个路径进行连接。有时候这些路径之间可能存在交叉或重叠的情况,即多个路径共享相同的一部分关系。为了更好地表示和理解这种情况,可以使用由重叠关系路径组成的关系有向图。
在这个有向图中,节点表示实体,有向边表示关系,而路径则由多个有向边组成。当多个路径共享相同的一部分关系时,可以通过在有向图中创建重叠边来表示这种情况。重叠边表示两个不同的路径之间的关系重叠或交叉。
假设我们有一个知识图谱,其中包含以下实体和关系:
实体:A、B、C、D、E
关系:R1、R2、R3
现在我们来构建由重叠关系路径组成的关系有向图。
假设存在以下路径:
路径1: A → R1 → B → R2 → C
路径2: A → R3 → D → R2 → C
路径3: E → R1 → B → R2 → C
在这个关系有向图中,节点表示实体,有向边表示关系,而路径则由多个有向边组成。我们可以看到,路径1和路径2共享关系R2,而路径1和路径3共享关系R1
这个关系有向图可以帮助我们更好地理解实体之间的连接关系。例如,通过观察有向图,我们可以发现实体A和实体C之间存在两条不同路径,分别通过关系R1和关系R3。这可能暗示了A和C之间的某种关联或相似性。
通过分析这个由重叠关系路径组成的关系有向图,我们可以进行路径相似性计算、关联规则挖掘等任务。例如,我们可以计算路径1和路径2之间的相似性,或者挖掘出实体之间的关联规则,如"A → R1 → B → R2 → C" implies “A → R3 → D → R2 → C”。

介绍

真实世界的KG很大,而且高度不完整,因此推断新的事实是具有挑战性的。KG推理模拟了从现有事实推断出新的事实的过程。在本文中,我们重点学习关系结构,用于以(主体-实体,关系,?)。

在过去的十年里,基于三元组模型的知识学习在KG中得到了很大的关注。这些模型直接推理具有实体和关系嵌入的三元组,但由于三元组是独立学习的,它们不能明确地捕获结构信息,即查询三元组周围的局部结构,这些结构可以用作KG推理的证据。

关系路径第一次尝试捕获用于推理的结构信息。使用强化学习(RL)对与查询 具有强相关性的关系路径进行采样。由于KG的稀疏特性,RL方法很难在大规模KG上训练。PathCon对实体之间的所有关系路径进行采样,并使用注意力机制对不同路径进行加权。但是对于实体查询任务来说是昂贵的。基于规则的方,将关系路径概括为逻辑规则,学习通过关系的逻辑组成,并可以提供可解释的见解。此外,逻辑规则可以传输到以前看不见的实体,这些实体在现实世界的应用程序中很常见,而基于三元组的模型无法处理这些实体。

在获取结构信息方面,子图自然比路径信息更丰富。随着图神经网络(GNN)在图结构数据建模方面的成功。GNN已被引入来捕获KG中的子图结构。R-GCN和CompGCN提出通过聚合每层KG上的所有1跳邻居来更新实体的表示。然而,它无法区分不同邻居的结构依赖性,也无法解释。DPMPN通过保留给定查询的最可能实体,而不是学习特定的局部结构,学会了在大规模KGs上减少推理子图的大小。最近,GraIL提出了从局部封闭子图结构预测关系,并展示了子图的归纳能力。然而它由于封闭子图的限制,也面临有效性和效率问题。

受基于路径的方法的可解释性和可转换性以及子图的结构保持性的启发,我们在KG中引入了一种新的关系结构,称为r-digraph。r-digraph通过保留重叠的关系路径和关系的结构来进行推理,从而将关系路径推广到子图。与结构简单的关系路径不同,如何有效地构建和学习r-digraph是一项挑战,因为直接在每个r-digraph上进行计算对于推理查询来说是非常昂贵的。受使用动态规划解决重叠子问题中计算成本的启发,我们提出了RED-GNN,这是一种具有GNN变体的关系有向图的有效学习框架。经验上,RED-GNN在具有看不见实体和不完整KG的KG的基准测试中都比最先进的推理方法显示出显著的优势。此外,训练和推理过程是有效的,学习的结构是可解释的。

相关工作

一个知识图谱形式为:K={V,R,F},其中V,R,F={(es,r,eo)|es,eo∈V,r∈R}分别是一组实体、关系和三元组事实。让eq作为查询实体,rq作为查询关系,ea作为答案实体。给出一个查询(eq,rq,?),推理任务是预测答案实体ea。通常,V中的所有实体都是ea的候选实体。

KG推理的关键是捕获查询周围的局部证据,如关系路径或子图。在这一部分中,我们介绍了利用 F F F中的结构进行推理的基于路径的方法和基于GCN的方法。

基于路径的方法

关系路径由一组按顺序连接的三元组组成,它比单个三元组更具有信息性,因为它可以提供可解释的结果并转移至未知实体(transfer to unseen entities)

"transfer to unseen entities"转移至未知实体
是指将知识从已知实体转移到未知实体的过程。
当我们谈论将知识转移到未知实体时,意味着在知识图谱中没有直接表示或记录的实体。这可以发生在以下情况下:
1.新实体:当一个新的实体出现,而它在知识图谱中没有相关的记录时,我们需要将知识从已知实体迁移到这个新实体上。这可以通过使用已有的关系和属性信息进行推理或利用相似实体的知识进行迁移。
2.未见实体:在某些情况下,我们可能只能观察到实体的部分信息,而无法完全了解它。这些实体被称为未见实体。在这种情况下,我们可以通过与已知实体的关系和属性进行推理,来推断并转移知识到未见实体上。

关系路径
长度为L的关系路径是一组L个连续三元组(e0,r1,e1),(e1,r2,e2),… ,(eL-1,rL,eL),它们按顺序首尾相连。

基于路径的方法学习通过一组关系路径作为局部证据来预测三元组(eq, rq, ea)。DeepPath通过强化学习(RL)学习生成从eq到ea的关系路径。为了提高效率,MINERVA和M-walk通过RL来学习来自eq的多条路径。分数由不同ea的到达频率表示。由于KG的复杂结构,奖励非常稀疏,使得训练RL模型变得困难。PathCon对连接两个实体的所有路径进行采样,以预测它们之间的关系,这对于推理任务(eq, rq, ea)来说是昂贵的。

除了直接使用路径,基于规则的方法将逻辑规则学习为关系路径的广义形式。逻辑规则是由一组关系组成的,用来推断特定的关系,以提供更好的解释,并可以传递给看不见的实体。规则可以通过离散挖掘、EM算法(如RNNLogic)或端到端训练(如Neural LP和DRUM)来学习,生成eq和ea之间高度相关的关系路径。规则可以提供逻辑解释并转移到看不见的实体。然而,规则只能捕获顺序证据,因此无法学习更复杂的模式,如子图结构。

基于GNN的方法

子图可以自然地保留比相对路径更丰富的信息。所有的关系路径都是从一些局部子图中采样的。因此,它们自然会丢失KG中的一些结构信息,例如多个实体和边是如何连接的。GNN在对图形结构化数据11进行建模方面具有强大的能力。这启发了最近的工作将GNN扩展到KG上,以将实体和关系在消息传递框架下的表示聚合为:
在这里插入图片描述
其在具有维度d的实体eo的1跳相邻边缘(es,r,eo)上的消息上聚合。Φ(·,·)是消息函数,在这里插入图片描述是加权矩阵, δ δ δ是激活函数。
在L层之后,捕捉实体e∈V的局部结构的表示在这里插入图片描述与评分函数联合工作,以对三元组进行评分。由于聚合函数聚合了所有邻居的信息,并且与查询无关,因此R-GCN和CompGCN无法捕获用于推理特定查询的显式结构,并且是不可解释的。

DPMPN没有使用所有邻域,而是设计了一个GNN来聚合实体的嵌入,另一个GNN来动态扩展和修剪来自查询实体的推理子图,例如•在采样实体上应用与查询相关的注意力进行修剪。这种方法通过关注修剪后的子图来展示可解释的推理过程,但仍然需要嵌入来指导修剪,因此不能推广到看不见的实体。此外,它不能捕获支持给定查询三元组的显式子图结构。xERTR LIOJ扩展了用于推理时态KGs中未来三元组的DPMPN。

最近,GralL提出提取查询实体eq和回答实体ea之间的封闭子图G(eq,ea)。为了学习封闭子图,在G(eq,ea)中,在边上应用具有查询相关注意力的关系GNN,以控制边对不同查询的重要性。在L层的聚合之后,聚合子图中所有实体e∈V的图级表示用于对三元组(eq,rq,ea)进行评分。由于需要显式地提取子图并对不同的三元组进行评分,因此计算成本非常高。

关系有向图

关系路径,尤其是逻辑规则,在KG上显示出强大的推理能力,可以提供可解释的结果并转移到看不见的实体。然而,由于它们是从局部子图中采样的,因此在KG中捕获更复杂的依赖关系时,它们是有限的。基于GNN的方法可以学习不同的子图结构。但现有的方法都无法有效地学习子图结构,这些子图结构既可解释又可转移到规则等看不见的实体。因此,我们有动机定义一种新的结构,即r-digraph,通过推广关系路径来探索结构依赖性。在下一节中,我们展示如何定制GNN可以有效地从r-digraph中学习。
分层ST图
分层st图是一个有向图,只有一个源节点(s)和一个 汇节点(t) 。所有的边都是有向的,连接连续层之间的节点,并从较低层指向较高层。

汇节点是指一个节点,它只接收来自其他节点的边,而不发出任何边。换句话说,它是一个只有入度没有出度的节点。

在这里,我们采用一般的方法来增强具有反向和同一关系的三元组。那么在eq和ea之间长度小于或等于L的所有关系路径都可以表示为在这里插入图片描述长度为L。这样,它们可以形成为分层st图中的路径,具有单个源实体eq和单个汇点实体ea。这样的结构保留了eq和ea之间长度为L的所有关系路径,并保持了子图结构。

r-digraph
r-digraph 在这里插入图片描述是一个具有源实体eq和汇实体ea的分层st图。同一层中的实体彼此不同:r-digraph中从eq指向ea的任何路径都是长度为L的关系路径 在这里插入图片描述,其中 r l r^l rl连接 l − 1 l-1 l1层中和 l l l层中的实体。如果没有连接eq和ea的关系路径我们定义为在这里插入图片描述
在这里插入图片描述

RED-GCN

实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/29396.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动手学深度学习Pytorch 4.4练习

1.这个多项式回归问题可以准确地解出吗?提⽰:使⽤线性代数。 可以,把多项式问题,用matlab的str2sym表示出来,再用solve求解。 2.考虑多项式的模型选择。 1. 绘制训练损失与模型复杂度(多项式的阶数)的关系…

uniapp微信小程序底部弹窗自定义组件

基础弹窗效果组件 <template><view><viewclass"tui-actionsheet-class tui-actionsheet":class"[show ? tui-actionsheet-show : ]"><view class"regional-selection">底部弹窗</view></view><!-- 遮罩…

Pytorch深度学习-----现有网络模型的使用及修改(VGG16模型)

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…

有哪些简单的AI绘画软件?

随着人工智能技术的不断发展&#xff0c;越来越多的人工智能绘画软件出现了。人工智能绘画软件利用人工智能技术&#xff0c;通过计算机自动生成或辅助生成艺术作品。人工智能绘画软件通常集成了深度学习、计算机视觉和自然语言处理技术&#xff0c;可以模拟人类的创作过程&…

二、MySql库的操作

文章目录 一、库的操作&#xff08;一&#xff09;创建数据库&#xff08;二&#xff09;创建数据库案例&#xff08;三&#xff09;字符集和校验规则1、 查看系统默认字符集以及校验规则2、查看数据库支持的字符集3、查看数据库支持的字符集校验规则4、校验规则对数据库的影响…

区块链实验室(15) - 编译FISCO BCOS的过程监测

首次编译开源项目&#xff0c;一般需要下载很多依赖包&#xff0c;尤其是从github、sourceforge等下载依赖包时&#xff0c;速度很慢&#xff0c;编译进度似乎没有一点反应&#xff0c;似乎陷入死循环&#xff0c;似乎陷入一个没有结果的等待。本文提供一种监测方法&#xff0c…

Ubuntu常用压缩指令总结

一、tar tar是Linux系统中最常用的压缩工具之一&#xff0c;它的一个优点是它可以保留文件的权限和所有权信息。tar可以创建.tar文件&#xff08;通常称为"tarball"&#xff09;&#xff0c;或者与gzip或bzip2等工具结合使用来创建.tar.gz或.tar.bz2文件。gzip工具的…

MySQL语法2

DQL语句介绍 DQL是数据查询语言&#xff0c;用来查询数据库中表的记录 DQL-基本查询语句 SELECT 字段列表 FROM 表名列表 WHERE 条件列表 GROUP BY 分组字段列表 HAVIMG 分组后条件列表 ORDER BY 排列字段列表 LIMIT 分页参数 讲解过程&#xff1a;基本查询、条件查询…

2023-08-09 LeetCode每日一题(整数的各位积和之差)

2023-08-09每日一题 一、题目编号 1281. 整数的各位积和之差二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数 n&#xff0c;请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 示例1&#xff1a; 示例2&#xff1a; 提示&#xff1a; 1 …

uniapp scroll-view 隐藏滚动条

/*清除滚动条 - 适配安卓*/::-webkit-scrollbar {width: 0;height: 0;color: transparent;}/*清除滚动条 - 适配IOS*/::-webkit-scrollbar {display: none;}

各种查找算法的效率分析

各种查找算法的效率 顺序查找 一般顺序表&#xff08;没有顺序&#xff0c;随机排列&#xff09; 成功时平均查找长度&#xff1a; 1 . . . n n n 1 2 \frac{1...n}{n}\frac{n1}{2} n1...n​2n1​失败时平均查找长度&#xff1a; n n n 有序顺序表&#xff08;按照递增或递…

【office】world设置标题

这里写目录标题 一、整理样式库二、设置标题编号三、设置标题其它信息1.设置 标题 1a.设置字体b.设置边框c.设置段落 2.设置 标题 2a.设置字体b.设置边框 3.设置 标题 3a.设置字体b.设置边框 4.设置 标题 4a.设置字体 5.设置 标题 5a.设置字体 一、整理样式库 1.选择“开始” …

Java数据类型,一文带你彻底拿捏~

——Java中运算符是一种特殊的符号&#xff0c;用来进行数据的运算、赋值和比较等 思维导图 一.算术运算符 1.什么是算术运算符 ——算术运算符是用于数据类型值之间&#xff0c;使用2个或以上的数据进行运算 2.算术运算符概括 算术运算符 解释示例&#xff0c;-正号&…

自动化干货!一文搞懂Salesforce Flow/流中的Pause元素

通过自动化&#xff0c;帮助团队提升效率&#xff0c;将员工从那些重复、枯燥、耗时的工作中解放出来&#xff0c;转而从事更具创造性、更有价值的工作&#xff0c;是很多企业数字化转型朴素而又迫切的需求&#xff0c;也是世界No.1 CRM——Salesforce的一大领先优势。 Flow B…

Docker实战-如何去访问Docker仓库?

导语   仓库在之前的分享中我们介绍过,它主要的作用就是用来存放镜像文件,又可以分为是公共的仓库和私有仓库。有点类似于Maven的中央仓库和公司内部私服。 下面我们就来介绍一下在Docker中如何去访问各种仓库。 Docker Hub 公共镜像仓库 Docker Hub 是Docker官方提供的最…

Yolov5缺陷检测/目标检测 Jetson nx部署Triton server

使用AI目标检测进行缺陷检测时&#xff0c;部署到Jetson上即小巧算力还高&#xff0c;将训练好的模型转为tensorRT再部署到Jetson 上供http或GRPC调用。1 Jetson nx 刷机 找个ubuntu 系统NVIDIA官网下载安装Jetson 的sdkmanager一步步刷机即可。 本文刷的是JetPack 5.1, 其中包…

【Windows】Windows开机密码重置

文章目录 前言一、问题描述二、操作步骤2.1 安装DaBaiCai_d14_v6.0_2207_Online.exe2.2 插入U盘2.3 打开大白菜&#xff0c;点击“一键制作USB启动盘”2.4 等待进度条走完2.5 重启电脑&#xff0c;开机按“F12”或者“F8”&#xff08;具体百度一下&#xff0c;对应品牌电脑开机…

笔试数据结构选填题

目录 卡特兰数Catalan&#xff1a;出栈序列/二叉树数 树 二叉树 N01N2 哈夫曼树&#xff08;最优二叉树&#xff09;Huffman 度m的哈夫曼树只有度为0和m的结点&#xff1a;Nm(n-1)/(m-1) 平衡二叉树AVL Nh表示深度为h最少结点数&#xff0c;则N00&#xff0c;N11&#…

网络防御(7)

课堂实验 R1 [Huawei] int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 100.1.12.2 24 protocolAug 1 2023 10:24:09-08:00 Huawei gOlIFNET/4/LINK STATE(1)[4]:The1ineIp on the interface GigabitEthernet0/0/0 has entered the Up state. [Huawei-GigabitEthernet0/0/…

SpringBoot 底层机制分析【Tomcat 启动+Spring 容器初始化+Tomcat 如何关联Spring 容器】【下】

&#x1f600;前言 本篇博文是关于SpringBoot 底层机制分析实现&#xff0c;希望能够帮助你更好的了解SpringBoot &#x1f60a; &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大…