econml双机器学习实现连续干预和预测

连续干预

在这个示例中,我们使用LinearDML模型,使用随机森林回归模型来估计因果效应。我们首先模拟数据,然后模型,并使用方法来effect创建不同干预值下的效应(Conditional Average Treatment Effect,CATE)。

请注意,实际情况中的数据可能更加复杂,您可能需要根据您的数据和问题来适当选择的模型和参数。此示例仅供参考,您可以根据需要进行修改和扩展。

import numpy as np
from econml.dml import LinearDML# 生成示例数据
np.random.seed(123)
n_samples = 1000
n_features = 5
X = np.random.normal(size=(n_samples, n_features))
T = np.random.uniform(low=0, high=1, size=n_samples)  # 连续干预变量
y = 2 * X[:, 0] + 0.5 * X[:, 1] + 3 * T + np.random.normal(size=n_samples)# 初始化 LinearDML 模型
est = LinearDML(model_y='auto', model_t='auto', random_state=123)# 拟合模型
est.fit(y, T, X=X)# 给定特征和连续干预值,计算干预效应
X_pred = np.random.normal(size=(10, n_features))  # 假设有新的数据点 X_pred
T_pred0 = np.array([0]*10)  # 指定的连续干预值
T_pred11 = np.array([0.2, 0.4, 0.6, 0.8, 1.0, 0.3, 0.5, 0.7, 0.9, 0.1])  # 指定的连续干预值
T_pred1 = np.array([0.2]*10)  # 指定的连续干预值
T_pred2 = np.array([0.4]*10)  # 指定的连续干预值
T_pred3 = np.array([0.6]*10)  # 指定的连续干预值
T_pred4 = np.array([0.8]*10)  # 指定的连续干预值# 计算连续干预效应
effect_pred = est.effect(X=X_pred, T0=T_pred0, T1=T_pred11)print("预测的连续干预效应:", effect_pred)# 计算连续干预效应
effect_pred = est.effect(X=X_pred, T0=T_pred0, T1=T_pred1)print("预测的连续干预效应:", effect_pred)

The R Learner is an approach for estimating flexible non-parametric models of conditional average treatment effects in the setting with no unobserved confounders. The method is based on the idea of Neyman orthogonality and estimates a CATE whose mean squared error is robust to the estimation errors of auxiliary submodels that also need to be estimated from data:

  1. the outcome or regression model

  2. the treatment or propensity or policy or logging policy model

使用随机实验数据进行双重机器学习(DML)训练可能会在某些情况下获得更好的效果,但并不是绝对的规律。DML方法的性能取决于多个因素,包括数据质量、特征选择、模型选择和调参等。

使用随机实验数据进行训练的优势在于,实验数据通常可以更好地控制混淆因素,从而更准确地估计因果效应。如果实验设计得当,并且随机化合理,那么通过DML训练的模型可以更好地捕捉因果关系,从而获得更准确的效应估计。

然而,即使使用随机实验数据,DML方法仍然需要考虑一些因素,例如样本大小、特征的选择和处理、模型的选择和调参等。在实际应用中,没有一种方法可以适用于所有情况。有时,随机实验数据可能会受到实验设计的限制,或者数据质量可能不足以获得准确的效应估计。

因此,使用随机实验数据进行DML训练可能会在某些情况下获得更好的效果,但并不是绝对的规律。在应用DML方法时,仍然需要根据实际情况进行数据分析、模型选择和验证,以确保获得准确和可靠的因果效应估计。

dml原理

Double Machine Learning, DML。

方法:首先通过X预测T,与真实的T作差,得到一个T的残差,然后通过X预测Y,与真实的Y作差,得到一个Y的残差,预测模型可以是任何ML模型,最后基于T的残差和Y的残差进行因果建模。
原理:DML采用了一种残差回归的思想。
优点:原理简单,容易理解。预测阶段可以使用任意ML模型。
缺点: 需要因果效应为线性的假设。
应用场景:适用于连续Treatment且因果效应为线性场景
 

单调性约束

因果推断的开源包中,有一些可以进行单调性约束的案例。这些案例通常涉及到因果效应的估计,同时加入了单调性约束以确保结果更加合理和可解释。以下是一些开源包以及它们支持单调性约束的案例示例:

  1. CausalML(https://causalml.readthedocs.io/):

    • CausalML 是一个开源的因果推断工具包,支持单调性约束。它提供了一些可以用于处理单调性约束的方法,例如 SingleTreatment 类。您可以使用该包来在处理因果效应时添加单调性约束。
  2. econml(https://econml.azurewebsites.net/):

    • econml 也是一个用于因果推断的工具包,支持单调性约束。它提供了一些工具,如 SingleTreePolicyInterpreterSingleTreeCateInterpreter,用于解释单一决策树的因果效应,并且可以根据用户指定的特征添加单调性约束。
SingleTreeCateInterpreter(_SingleTreeInterpreter):"""An interpreter for the effect estimated by a CATE estimatorParameters----------include_model_uncertainty : bool, default FalseWhether to include confidence interval information when building asimplified model of the cate model. If set to True, thencate estimator needs to support the `const_marginal_ate_inference` method.uncertainty_level : double, default 0.05The uncertainty level for the confidence intervals to be constructedand used in the simplified model creation. If value=alphathen a multitask decision tree will be built such that all samplesin a leaf have similar target prediction but also similar alphaconfidence intervals.uncertainty_only_on_leaves : bool, default TrueWhether uncertainty information should be displayed only on leaf nodes.If False, then interpretation can be slightly slower, especially for catemodels that have a computationally expensive inference method.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/29130.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习MOT videos detect】Detect to Track and Track to Detect

论文:https://arxiv.org/abs/1710.03958 代码:https://github.com/feichtenhofer/Detect-Track 文章目录 Abstract1. Introduction2. Related work后面翻译略 Abstract 近期用于在视频中高精度检测和跟踪目标类别的方法越来越复杂,每年都变得…

【Express.js】使用zod检验

使用zod检验 上一节我们介绍了 express-validator,本节我们介绍一个更通用的检验工具 Zod What’s Zod.js? 写前端的同学可能知道Zod,我们在提交表单前需要对数据初步检查,Zod是一个很棒的工具。前端可以偷懒,但后端不能偷懒&…

Camunda 7.x 系列【10】使用 Java API 运行流程实例

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址:https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 前言2. 运行流程实例2.1 查询流程定义2.2 启动流程2.3 任务查询2.4 审批3. 数据表1. 前言…

vue3—SCSS的安装、配置与使用

SCSS 安装 使用npm安装scss: npm install sass sass-loader --save-dev 配置 配置到全局 🌟附赠代码🌟 css: {preprocessorOptions: {scss: {additionalData:import "./src/Function/Easy_I_Function/Echarts/ToSeeEcharts/utill.…

Spring Boot Admin 环境搭建与基本使用

Spring Boot Admin 环境搭建与基本使用 一、Spring Boot Admin是什么二、提供了那些功能三、 使用Spring Boot Admin3.1搭建Spring Boot Admin服务pom文件yml配置文件启动类启动admin服务效果 3.2 common-apipom文件feignhystrix 3.3服务消费者pom文件yml配置文件启动类control…

前端面试的性能优化部分(6)每天10个小知识点

目录 系列文章目录前端面试的性能优化部分(1)每天10个小知识点前端面试的性能优化部分(2)每天10个小知识点前端面试的性能优化部分(3)每天10个小知识点前端面试的性能优化部分(4)每天…

Simulation 线性静力分析流程

有限元仿真分析软件有很多,但是分析的流程却是大同小异,今天给大家分享的是Simulation的线性静力分析流程。 1.构思分析方案。 确定研究对象,研究的方法、验证方案等等。听起来比较空洞,实践过程中我建议首先需要把目标和有限元分…

HDFS中的Trash垃圾桶回收机制

Trash垃圾桶回收机制 文件系统垃圾桶背景功能概述Trash Checkpoint Trash功能开启关闭HDFS集群修改core-site.xml删除文件到trash删除文件跳过从trash中恢复文件清空trash 文件系统垃圾桶背景 回收站(垃圾桶)是windows操作系统里的一个系统文件夹&#…

C++学习笔记总结练习:并发编程与多线程

并发编程与多线程 1. 基础知识 C多线程 线程:线程是操作系统能够进行CPU调度的最小单位,它被包含在进程之中,一个进程可包含单个或者多个线程。可以用多个线程去完成一个任务,也可以用多个进程去完成一个任务,它们的…

一起学SF框架系列7.1-spring-AOP-基础知识

AOP(Aspect-oriented Programming-面向切面编程)是一种编程模式,是对OOP(Object-oriented Programming-面向对象编程)一种有益补充。在OOP中,万事万物都是独立的对象,对象相互耦合关系是基于业务进行的;但在…

python获取类名__qualname__,解决django接口ObjectDoesNotExist异常寻找model的问题

在django项目中,经常使用类似Model.objects.get(id1)的方法取对象,默认抛出的异常是ObjectDoesNotExist类型,通过try catch可以把异常捕获,获取的异常是Model.DoesNotExist类型, 要获知其类名,可以使用__na…

目标识别模型两种部署形态图

目标检测预训练模型基于新数据进行微调(训练)之后,得到一个权重文件。 在日常工业、车载等需求环境下,需要在嵌入式移动端的软件系统中调用该模型文件进行推断测试,软件系统追求性能经常使用C/C进行编码实现&#xff…

第十一次CCF计算机软件能力认证

第一题:打酱油 小明带着 N 元钱去买酱油。 酱油 10 块钱一瓶,商家进行促销,每买 3 瓶送 1 瓶,或者每买 5 瓶送 2 瓶。 请问小明最多可以得到多少瓶酱油。 输入格式 输入的第一行包含一个整数 N,表示小明可用于买酱油的…

聚合在Elasticsearch中的使用及示例验证

聚合在Elasticsearch中的使用 系统中使用的ES环境不一定每篇文章都有,但是可以在合集中找到,关注《醉鱼Java》一起进步 环境 elasticsearch 8.1 搭建 version: 3.8 services:cerebro:image: lmenezes/cerebro:0.8.3container_name: cerebroports:- "…

【深度学习】【风格迁移】Visual Concept Translator,一般图像到图像的翻译与一次性图像引导,论文

General Image-to-Image Translation with One-Shot Image Guidance 论文:https://arxiv.org/abs/2307.14352 代码:https://github.com/crystalneuro/visual-concept-translator 文章目录 Abstract1. Introduction2. 相关工作2.1 图像到图像转换2.2. Di…

一键登录和短信验证登录,到底有什么区别?

一键登录是什么? 本机号码一键登录验证是一种登录认证方式,通过获取用户手机上的本机号码来验证用户身份,从而实现快捷登录和简化登录流程的目的。 在使用一键登录时,首先需要用户在登录页面选择使用本机号码一键登录&#xff0…

ROS学习笔记之——路径规划及avoid obstacles

之前博客《ROS学习笔记之——Navigation Stack及路径规划》介绍了navigation stack,其中涉及到的amcl、路径规划以及避障还没有详细的展开 目录 AMCL 路径规划 全局路径规划中的地图 栅格地图(Grid Map) 概率图(Cost Map) 特征地图(Feature Map) 拓扑地图(Topo…

排序-堆排序

给你一个整数数组 nums,请你将该数组升序排列。 输入:nums [5,2,3,1] 输出:[1,2,3,5] 输入:nums [5,1,1,2,0,0] 输出:[0,0,1,1,2,5] 思路直接看我录制的视频吧 算法-堆排序_哔哩哔哩_bilibili 实现代码如下所示&…

网络防御(2)

1. 什么是防火墙? 2. 状态防火墙工作原理? 3. 防火墙如何处理双通道协议? 一、什么是防火墙? 防火墙是一种网络安全设备或软件,用于保护计算机网络免受未经授权的访问,并管理网络流量。它作为一个安全边界…

Android中级——RemoteView

RemoteView RemoteView的应用NotificationWidgetPendingIntent RemoteViews内部机制模拟RemoteViews RemoteView的应用 Notification 如下开启一个系统的通知栏,点击后跳转到某网页 public class MainActivity extends AppCompatActivity {private static final …