【图像去噪】基于混合自适应(EM 自适应)实现自适应图像去噪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

图像去噪是图像处理领域中的一个重要问题,其目标是通过对图像进行处理,减少或去除图像中的噪声,提高图像质量。混合自适应(EM 自适应)是一种常用的图像去噪方法之一。

混合自适应的基本思想是将图像中的噪声和信号分离开来,并分别对其进行处理。包括以下步骤:

1. 初始估计:首先需要对图像进行一个初始估计,可以使用一些简单的滤波方法,如中值滤波器等。

2. 估计噪声模型:通过对图像进行统计分析,估计出图像中的噪声模型,如高斯噪声、椒盐噪声等。

3. 分离噪声和信号:利用估计的噪声模型,将图像中的噪声和信号分离开来,可以采用波尔兹曼机、高斯混合模型等方法。

4. 自适应滤波:对分离得到的噪声和信号分别进行自适应滤波,针对不同的噪声模型可以采用不同的滤波器,常用的有均值滤波、维纳滤波、非局部均值滤波等。

5. 重组:将滤波后的噪声和信号重组得到最终的去噪图像。

混合自适应方法能够根据图像中的噪声模型进行自适应处理,对不同类型的噪声都有较好的去除效果。然而,该方法在计算复杂度和处理时间上可能较高,并且需要提前对图像的噪声模型进行估计,对于未知噪声模型的图像去噪可能会存在一定的挑战。因此,在实际应用中需要根据具体情况选择合适的图像去噪方法。

📚2 运行结果

主函数代码:

clear;
close all;
addpath('code');
addpath('data/standard_images')

load GSModel_8x8_200_2M_noDC_zeromean.mat
GMM.ncomponents = GS.nmodels;
GMM.mus = GS.means;
GMM.covs = GS.covs;
GMM.weights = GS.mixweights;
clear GS;
x = im2double(imread('House256.png'));
sigmaNoise = 20/255;
y = x + sigmaNoise * randn(size(x));        % noisy test image

%%%% EPLL denoising %%%%
xEPLL = y;
for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]
    [xEPLL, psnr_EPLL, ssim_EPLL] = MAP_GMM(x, y, xEPLL, sigmaNoise, sigma, GMM);
end
fprintf('PSNR(EPLL) is:%.2f\n', psnr_EPLL);
fprintf('SSIM(EPLL) is:%.4f\n', ssim_EPLL);

%%%% EM adaptation using EPLL denoised image and MAP denoising with adapted GMM %%%%
xHat = xEPLL;
epsilon = 0.01;
b = randn(size(y));
n = numel(y);
xEPLL1 = y + epsilon*b;
for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]
    [xEPLL1, ~, ~] = MAP_GMM(x, y + epsilon*b, xEPLL1, sigmaNoise, sigma, GMM);
end
xHat1 = xEPLL1;
div = (b(:)'*(xHat1(:) - xHat(:))) / (n*epsilon);
beta_opt = (sqrt(mean((y(:) - xHat(:)).^2) - sigmaNoise^2 + 2*sigmaNoise^2*div)) / sigmaNoise;
aGMM = EM_adaptation(GMM, xEPLL, beta_opt * sigmaNoise, 1);
xAdapted_EPLL = y;
for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]
    [xAdapted_EPLL, psnr_adapted, ssim_adapted] = MAP_GMM(x, y, xAdapted_EPLL, sigmaNoise, sigma, aGMM);
end
fprintf('PSNR(adapted by EPLL image) is:%.2f\n', psnr_adapted);
fprintf('SSIM(adapted by EPLL image) is:%.4f\n', ssim_adapted);

return

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] E. Luo, S. H. Chan, and T. Q. Nguyen, "Adaptive Image Denoising by Mixture Adaptation," IEEE Trans. Image Process. 2016.
[2] S. H. Chan, E. Luo and T. Q. Nguyen, "Adaptive Patch-based Image Denoising by EM-adaptation," in Proc. IEEE Global Conf. Signal Information Process. (GlobalSIP'15), Dec. 2015.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27650.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

目标检测中的IOU

IOU 什么是IOU?IOU应用场景写代码调试什么是IOU? 简单来说IOU就是用来度量目标检测中预测框与真实框的重叠程度。在图像分类中,有一个明确的指标准确率来衡量模型分类模型的好坏。其公式为: 这个公式显然不适合在在目标检测中使用。我们知道目标检测中都是用一个矩形框住…

lz4 与 lz77 压缩算法举例

lz4算法 abcd efab cdeh 压缩过程: 以长度4为滑窗,1为步长,对abcd计算hash存入hash table,计算 bcde, cdef,defa,efab,fabc的 hash 分别加入 hash table,下一个滑窗 abcd 找到了匹配&#xf…

调整vscode

调整vscode 连wifi linux连接wifi

不懂录音转文字转换器如何使用?来掌握这几个方法吧

作为一名忙碌的职场人士,我每天都要参加各种会议。我发现自己经常会错过会议的一些重要信息,利用录音记录又要费时间去听再转录,实在令我很头疼。直到我开始使用录音转文字这个工具,它简直像魔法一样。只要将需要转换的音频上传就…

信息安全:认证技术原理与应用.

信息安全:认证技术原理与应用. 认证机制是网络安全的基础性保护措施,是实施访问控制的前提,认证是一个实体向另外一个实体证明其所声称的身份的过程。在认证过程中,需要被证实的实体是声称者,负责检查确认声称者的实体…

【前端】html

HTML标签(上) 目标: -能够说出标签的书写注意规范 -能够写出HTML骨架标签 -能够写出超链接标签 -能够写出图片标签并说出alt和title的区别 -能够说出相对路径的三种形式 目录: HTML语法规范HTML基本结构标签开发工具HTML常用标…

PY32F003 FLASH

了解py32芯片的flash内容,对于py32进行api升级有更好的了解的操作 //uiOffset 0(4MHz), 1(8MHz), 2(16MHz), 3(22.12MHz), 4(24MHz) void SetFlashParameter(uint32_t uiOffset) {WRITE_REG(FLASH->KEYR, FLASH_KEY1);WRITE_REG(FLASH->KEYR, FLASH_KEY2); …

责任链模式(Chain of Responsibility)

责任链模式是一种行为设计模式,允许将请求沿着处理者链进行发送。收到请求后,每个处理者均可对请求进行处理,或将其传递给链上的下个处理者。职责链模式使多个对象都有机会处理请求,从而避免请求的发送者和接受者之间的耦合关系。…

在外SSH远程连接Ubuntu系统

在外SSH远程连接Ubuntu系统【无公网IP】 文章目录 在外SSH远程连接Ubuntu系统【无公网IP】前言1. 在Ubuntu系统下安装cpolar软件2. 完成安装后打开cpolar客户端web—UI界面3. 创建隧道取得连接Ubuntu系统公网地址4. 打开Windows的命令界面并输入命令 前言 随着科技和经济的发展…

Synchronized同步锁的优化方法 待完工

Synchronized 和后来出的这个lock锁的区别 在并发编程中,多个线程访问同一个共享资源时,我们必须考虑如何维护数据的原子性。在 JDK1.5 之前,Java 是依靠 Synchronized 关键字实现锁功能来做到这点的。Synchronized 是 JVM 实现的一种内置锁…

论文阅读 RRNet: A Hybrid Detector for Object Detection in Drone-captured Images

文章目录 RRNet: A Hybrid Detector for Object Detection in Drone-captured ImagesAbstract1. Introduction2. Related work3. AdaResampling4. Re-Regression Net4.1. Coarse detector4.2. Re-Regression 5. Experiments5.1. Data augmentation5.2. Network details5.3. Tra…

NeRF室内重建对比:Nerfstudio vs. Luma AI vs. Instant-NGP

十年前,Matterport 改变了房地产业,让房地产买家可以进行数字旅游。 买家可以在房产内从一个点移动到另一个点并环顾四周。 与 2D 照片库相比,这是一个巨大的改进。 然而,买家仍然被房产内的一系列问题所困扰。 推荐:用…

rk3399移植linux kernel

rk3399移植linux kernel 0.前言一、移植ubuntu根文件系统二、移植linux1.支持NFS(可选)2.配置uevent helper3.支持etx4文件系统(默认已支持)4.配置DRM驱动5.有线网卡驱动6.无线网卡驱动 三、设备树四、内核镜像文件制作五、烧录六、总结 参考文章: 1.RK3399移植u-bo…

TypeScript 中【class类】与 【 接口 Interfaces】的联合搭配使用解读

导读: 前面章节,我们讲到过 接口(Interface)可以用于对「对象的形状(Shape)」进行描述。 本章节主要介绍接口的另一个用途,对类的一部分行为进行抽象。 类配合实现接口 实现(impleme…

如何用正确的姿势监听Android屏幕旋转

作者:37手游移动客户端团队 背景 关于个人,前段时间由于业务太忙,所以一直没有来得及思考并且沉淀点东西;同时组内一个个都在业务上能有自己的思考和总结,在这样的氛围下,不由自主的驱使周末开始写点东西&…

QT生成Debug和Release发布版后,运行exe缺少dll问题

在QT Creator生成debug和release的exe执行文件后,运行时,报错缺少*.dll.解决办法1: 在系统环境变量中添加D:\Qt\Qt5.13.2\Tools\mingw730_64\bin后,即可运行。 当使用此方法时,将exe拷贝到其他电脑中运行时&#xff0c…

软件性能测试有哪些测试指标?性能测试报告对软件产品起到的作用

在软件开发过程中,性能测试是一个至关重要的环节,主要关注软件系统在不同负载条件下的表现,以评估其稳定性、可扩展性和响应能力。它可以帮助开发人员评估软件系统的质量和性能。 一、软件性能测试的测试指标 性能测试的测试指标直接影响着…

【代码解读】RRNet: A Hybrid Detector for Object Detection in Drone-captured Images

文章目录 1. train.py2. DistributedWrapper类2.1 init函数2.2 train函数2.3 dist_training_process函数 3. RRNetOperator类3.1 init函数3.1.1 make_dataloader函数 3.2 training_process函数3.2.1 criterion函数 4. RRNet类(网络模型类)4.1 init函数4.…

计算机视觉--距离变换算法的实战应用

前言: Hello大家好,我是Dream。 计算机视觉CV是人工智能一个非常重要的领域。 在本次的距离变换任务中,我们将使用D4距离度量方法来对图像进行处理。通过这次实验,我们可以更好地理解距离度量在计算机视觉中的应用。希望大家对计算…

IPC之一:使用匿名管道进行父子进程间通信的例子

IPC 是 Linux 编程中一个重要的概念,IPC 有多种方式,本文主要介绍匿名管道(又称管道、半双工管道),尽管很多人在编程中使用过管道,但一些特殊的用法还是鲜有文章涉及,本文给出了多个具体的实例,每个实例均附…