[RTKLIB]模糊度固定相关问题(二)

文章目录

  • 一、固定模糊度的前置工作
    • 1. 做好固定模糊度的准备
    • 2. 建立双差模糊度
    • 3. 问题与总结

版权声明:本文为原创文章,版权归 Winston Qu 所有,转载请注明出处。

  在上一篇文章中,介绍了RTKLIB中manage_amb_LAMBDA()函数,并详细介绍了其操作方式和工作方法。可见[RTKLIB]模糊度固定相关问题(一)
  本篇文章中,我们针对其模糊度固定函数resamb_LAMBDA()ddidx()做详细的分析,进一步的探索模糊度固定中有意思的部分。

一、固定模糊度的前置工作

1. 做好固定模糊度的准备

  在前一篇文中我们说到,为了提高浮点模糊度的固定率,进行了部分模糊度*、延迟上星的操作。但究其根本,还没有真正接触到模糊度固定的底层,并没有创建模糊度双差数组,也没有去建立模糊度求解的矩阵方程,更还没尝试通过整数最小二乘方法去固定模糊度。
  模糊度固定是一个比较复杂和繁琐的过程,前期会有许多的准备过程。从状态量中提取我们需要的状态,通过方差-协方差阵计算我们需要的Q矩阵。然后通过LAMBDA方法去求解固定后的状态向量,并通过一定的方法转换到单差模糊度,修正已有状态量。… 上述过程听着就挺复杂的,我们可以通过函数仔细看看做了哪些工作,从中理解设计和求解的思想。
附上源代码:

/* resolve integer ambiguity by LAMBDA ---------------------------------------*/
static int resamb_LAMBDA(rtk_t *rtk, double *bias, double *xa,int gps,int glo,int sbs)
{prcopt_t *opt=&rtk->opt;int i,j,nb,nb1,info,nx=rtk->nx,na=rtk->na;double *DP,*y,*b,*db,*Qb,*Qab,*QQ,s[2];int *ix;double var=0,coeff[3];double QQb[MAXSAT];trace(3,"resamb_LAMBDA : nx=%d\n",nx);rtk->sol.ratio=0.0;rtk->nb_ar=0;if (rtk->opt.mode<=PMODE_DGPS||rtk->opt.modear==ARMODE_OFF||rtk->opt.thresar[0]<1.0) {return 0;}/* skip AR if position variance too high to avoid false fix */for (i=0;i<3;i++) var+=rtk->P[i+i*rtk->nx];var=var/3.0; /* maintain compatibility with previous code */trace(3,"posvar=%.6f\n",var);if (var>rtk->opt.thresar[1]) {errmsg(rtk,"position variance too large:  %.4f\n",var);return 0;}/* Create index of single to double-difference transformation matrix (D')used to translate phase biases to double difference */ix=imat(nx,2);if ((nb=ddidx(rtk,ix,gps,glo,sbs))<(rtk->opt.minfixsats-1)) {  /* nb is sat pairs */errmsg(rtk,"not enough valid double-differences\n");free(ix);return -1; /* flag abort */}rtk->nb_ar=nb;/* nx=# of float states, na=# of fixed states, nb=# of double-diff phase biases */y=mat(nb,1); DP=mat(nb,nx-na); b=mat(nb,2); db=mat(nb,1); Qb=mat(nb,nb);Qab=mat(na,nb); QQ=mat(na,nb);/* phase-bias covariance (Qb) and real-parameters to bias covariance (Qab) *//* y=D*xc, Qb=D*Qc*D', Qab=Qac*D' */for (i=0;i<nb;i++) {y[i]=rtk->x[ix[i*2]]-rtk->x[ix[i*2+1]];}for (j=0;j<nx-na;j++) for (i=0;i<nb;i++) {DP[i+j*nb]=rtk->P[ix[i*2]+(na+j)*nx]-rtk->P[ix[i*2+1]+(na+j)*nx];}for (j=0;j<nb;j++) for (i=0;i<nb;i++) {Qb[i+j*nb]=DP[i+(ix[j*2]-na)*nb]-DP[i+(ix[j*2+1]-na)*nb];}for (j=0;j<nb;j++) for (i=0;i<na;i++) {Qab[i+j*na]=rtk->P[i+ix[j*2]*nx]-rtk->P[i+ix[j*2+1]*nx];}for (i=0;i<nb;i++) QQb[i]=1000*Qb[i+i*nb];trace(3,"N(0)=     "); tracemat(3,y,1,nb,7,2);trace(3,"Qb*1000=  "); tracemat(3,QQb,1,nb,7,4);/* lambda/mlambda integer least-square estimation *//* return best integer solutions *//* b are best integer solutions, s are residuals */if (!(info=lambda(nb,2,y,Qb,b,s))) {trace(3,"N(1)=     "); tracemat(3,b   ,1,nb,7,2);trace(3,"N(2)=     "); tracemat(3,b+nb,1,nb,7,2);rtk->sol.ratio=s[0]>0?(float)(s[1]/s[0]):0.0f;if (rtk->sol.ratio>999.9) rtk->sol.ratio=999.9f;/* adjust AR ratio based on # of sats, unless minAR==maxAR */if (opt->thresar[5]!=opt->thresar[6]) {nb1=nb<50?nb:50; /* poly only fitted for upto 50 sat pairs *//* generate poly coeffs based on nominal AR ratio */for ((i=0);i<3;i++) {coeff[i] = ar_poly_coeffs[i][0];for ((j=1);j<5;j++)coeff[i] = coeff[i]*opt->thresar[0]+ar_poly_coeffs[i][j];}/* generate adjusted AR ratio based on # of sat pairs */rtk->sol.thres = coeff[0];for (i=1;i<3;i++) {rtk->sol.thres = rtk->sol.thres*1/(nb1+1)+coeff[i];}rtk->sol.thres = MIN(MAX(rtk->sol.thres,opt->thresar[5]),opt->thresar[6]);} elsertk->sol.thres=(float)opt->thresar[0];/* validation by popular ratio-test of residuals*/if (s[0]<=0.0||s[1]/s[0]>=rtk->sol.thres) {/* init non phase-bias states and covariances with float solution values *//* transform float to fixed solution (xa=xa-Qab*Qb\(b0-b)) */for (i=0;i<na;i++) {rtk->xa[i]=rtk->x[i];for (j=0;j<na;j++) rtk->Pa[i+j*na]=rtk->P[i+j*nx];}/* y = differences between float and fixed dd phase-biasesbias = fixed dd phase-biases   */for (i=0;i<nb;i++) {bias[i]=b[i];y[i]-=b[i];}/* adjust non phase-bias states and covariances using fixed solution values */if (!matinv(Qb,nb)) {  /* returns 0 if inverse successful *//* rtk->xa = rtk->x-Qab*Qb^-1*(b0-b) */matmul("NN",nb,1,nb, 1.0,Qb ,y,0.0,db); /* db = Qb^-1*(b0-b) */matmul("NN",na,1,nb,-1.0,Qab,db,1.0,rtk->xa); /* rtk->xa = rtk->x-Qab*db *//* rtk->Pa=rtk->P-Qab*Qb^-1*Qab') *//* covariance of fixed solution (Qa=Qa-Qab*Qb^-1*Qab') */matmul("NN",na,nb,nb, 1.0,Qab,Qb ,0.0,QQ);  /* QQ = Qab*Qb^-1 */matmul("NT",na,na,nb,-1.0,QQ ,Qab,1.0,rtk->Pa); /* rtk->Pa = rtk->P-QQ*Qab' */trace(3,"resamb : validation ok (nb=%d ratio=%.2f thresh=%.2f s=%.2f/%.2f)\n",nb,s[0]==0.0?0.0:s[1]/s[0],rtk->sol.thres,s[0],s[1]);/* translate double diff fixed phase-bias values to single diff fix phase-bias values, result in xa */restamb(rtk,bias,nb,xa);}else nb=0;}else { /* validation failed */errmsg(rtk,"ambiguity validation failed (nb=%d ratio=%.2f thresh=%.2f s=%.2f/%.2f)\n",nb,s[1]/s[0],rtk->sol.thres,s[0],s[1]);nb=0;}}else {errmsg(rtk,"lambda error (info=%d)\n",info);nb=0;}free(ix);free(y); free(DP); free(b); free(db); free(Qb); free(Qab); free(QQ);return nb; /* number of ambiguities */
}

  我们来拆解步骤,并给出详细的解释。

  1. 准入条件判断,根据定为模式、位置方差判断当前是否适合进入模糊度固定。ps:可以想想如果位置方差很大,为什么不适合进入模糊度固定呢?
  2. 申请了一个im=(nx,2)的空间,用于保存构建双差浮点模糊度的索引值。之后通过ddidx()函数构建了双差浮点模糊度矩阵,在此处做了一个模糊度个数的判断,判断是否小于设定的最小固定卫星。ps:若出现三颗三频的卫星,此处的nb=(3-1)*3=6,确实满足最小卫星>4的条件,但是此处的固定是否有意义呢?我觉得这是一个版本迭代的BUG
  3. 根据公式计算双差浮点模糊度y、双差协方差矩阵Qb、双差实参协方差矩阵Qabps:如果从理论角度来说,在此处我们需要求四个矩阵,分别为Qa、Qab、Qba、Qb,但实质上我们只用到Qb、Qab就能完成整个计算流程。
  4. 输出固定前的浮点双差模糊度N(0)和模糊度的方差Qb*1000,在调试模糊度固定的时候,这两个值是非常重要的两个值。
  5. 使用lambda()函数进行浮点双差模糊度的固定,如果解算失败就释放申请的内存;若解算成功,则进行ratio testps:这里的解算成功不是指成功求解整数模糊度,而是指成功进行lambda()解算
  6. 输出计算过后的整数双差模糊度的最优解和次优解,如果设置了动态AR阈值,还需要根据卫星数计算模糊度阈值。
  7. 进行ratio test判断模糊度最优解与次优解的残差是否合规,模糊度是否可以被采纳。
  8. 将计算的整数双差模糊度通过计算更新到固定解位置和相应的方差-协方差解算矩阵上,并通过restamb()函数将整数双差模糊度转换到对应的浮点单差模糊度。ps:保存在xa变量中了,此处的restamb()与ddidx()互为反映射关系
  9. 返回模糊度个数nb

2. 建立双差模糊度

  如果要进行模糊度解算,肯定需要在系统中简历双差模糊度方程,如何做双差?选择怎样的卫星作为第一颗卫星?其中的奥秘都集中在ddidx()函数中。
附上源代码:

/* index for single to double-difference transformation matrix (D') --------------------*/
static int ddidx(rtk_t *rtk, int *ix, int gps, int glo, int sbs)
{int i,j,k,m,f,n,nb=0,na=rtk->na,nf=NF(&rtk->opt),nofix;double fix[MAXSAT],ref[MAXSAT];trace(3,"ddmat: gps=%d/%d glo=%d/%d sbs=%d\n",gps,rtk->opt.gpsmodear,glo,rtk->opt.glomodear,sbs);/* clear fix flag for all sats (1=float, 2=fix) */for (i=0;i<MAXSAT;i++) for (j=0;j<NFREQ;j++) {rtk->ssat[i].fix[j]=0;}for (m=0;m<6;m++) { /* m=0:GPS/SBS,1:GLO,2:GAL,3:BDS,4:QZS,5:IRN *//* skip if ambiguity resolution turned off for this sys */nofix=(m==0&&gps==0)||(m==1&&glo==0)||(m==3&&rtk->opt.bdsmodear==0);        /* step through freqs */ for (f=0,k=na;f<nf;f++,k+=MAXSAT) {/* look for first valid sat (i=state index, i-k=sat index) */for (i=k;i<k+MAXSAT;i++) {/* skip if sat not active */if (rtk->x[i]==0.0||!test_sys(rtk->ssat[i-k].sys,m)||!rtk->ssat[i-k].vsat[f]) {continue;}/* set sat to use for fixing ambiguity if meets criteria */if (rtk->ssat[i-k].lock[f]>=0&&!(rtk->ssat[i-k].slip[f]&2)&&rtk->ssat[i-k].azel[1]>=rtk->opt.elmaskar&&!nofix) {rtk->ssat[i-k].fix[f]=2; /* fix */break;/* break out of loop if find good sat */}/* else don't use this sat for fixing ambiguity */else rtk->ssat[i-k].fix[f]=1;}if (rtk->ssat[i-k].fix[f]!=2) continue;  /* no good sat found *//* step through all sats (j=state index, j-k=sat index, i-k=first good sat) */for (n=0,j=k;j<k+MAXSAT;j++) {if (i==j||rtk->x[j]==0.0||!test_sys(rtk->ssat[j-k].sys,m)||!rtk->ssat[j-k].vsat[f]) {continue;}if (sbs==0 && satsys(j-k+1,NULL)==SYS_SBS) continue; if (rtk->ssat[j-k].lock[f]>=0&&!(rtk->ssat[j-k].slip[f]&2)&&rtk->ssat[j-k].vsat[f]&&rtk->ssat[j-k].azel[1]>=rtk->opt.elmaskar&&!nofix) {/* set D coeffs to subtract sat j from sat i */ix[nb*2  ]=i; /* state index of ref bias */ix[nb*2+1]=j; /* state index of target bias *//* inc # of sats used for fix */ref[nb]=i-k+1;fix[nb++]=j-k+1;rtk->ssat[j-k].fix[f]=2; /* fix */n++; /* count # of sat pairs for this freq/constellation */}/* else don't use this sat for fixing ambiguity */else rtk->ssat[j-k].fix[f]=1;}/* don't use ref sat if no sat pairs */if (n==0) rtk->ssat[i-k].fix[f]=1;}}if (nb>0) {trace(3,"refSats=");tracemat(3,ref,1,nb,7,0);trace(3,"fixSats=");tracemat(3,fix,1,nb,7,0);}return nb;
}

  我们来拆解步骤,并给出详细的解释。

  1. 对所有的卫星rtk->ssat[i].fix[j]结构体进行清空,进行初始化。
  2. 对每个星座的每个频率进行双重循环,确定每个星座和每个频率中的参考卫星第一颗符合规定的卫星,对符合条件的卫星设定rtk->ssat[i-k].fix[f]=2; /* fix */,对有载波观测值但不符合条件的卫星设定rtk->ssat[i-k].fix[f]=1;完成卫星清洗工作,选出参考卫星。ps:本段存在很大的问题,在后面详细叙述。
  3. 上一个循环已经确定了参考卫星,在这个循环中确定同星座同频率的非参考卫星,与参考卫星组pairs,并记录对应的索引号、卫星号。
  4. 返回双差卫星(模糊度)个数。

3. 问题与总结

  通过上述的两个函数,我们就完成了除整数最小二乘(LAMBDA)外的所有模糊度固定的流程。表面上似乎没问题,但通过仔细的解析和细细回味,可以发现很多不合理的地方。

  1. 选择参考星的时候,并没有选择高度角最高的卫星;ps:这个问题其实困扰我一段时间了,似乎如果只更新xa、xp,选择高度角最高的卫星和系统内的第一颗卫星并没有很大的差别
  2. 双差模糊度nb和参与计算的卫星ns之争。在上述的代码中,使用nb判断这次解算是否有效,这似乎是一个随着版本迭代的bug。在单频状态下,nb确实可以代表参与解算的卫星数,但随着频率的增加,多频模糊度固定时,nb的数量可能会很大,但是真实参与解算和固定的卫星ns可能不满足固定的最小卫星数,此时固定的解算结果有意义吗?ps:通过固定的模糊度修正的nx实际上是秩亏的,个人认为是不正确的。
  3. restamb()与ddidx()互为映射关系,但其中的判断条件太简单了,且需要丰富判断条件。

版权声明:本文为原创文章,版权归 Winston Qu 所有,转载请注明出处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SSL介绍

1. SSL工作过程是什么&#xff1f; 当客户端向一个 https 网站发起请求时&#xff0c;服务器会将 SSL 证书发送给客户端进行校验&#xff0c;SSL 证书中包含一个公钥。校验成功后&#xff0c;客户端会生成一个随机串&#xff0c;并使用受访网站的 SSL 证书公钥进行加密&#xf…

论文阅读 RRNet: A Hybrid Detector for Object Detection in Drone-captured Images

文章目录 RRNet: A Hybrid Detector for Object Detection in Drone-captured ImagesAbstract1. Introduction2. Related work3. AdaResampling4. Re-Regression Net4.1. Coarse detector4.2. Re-Regression 5. Experiments5.1. Data augmentation5.2. Network details5.3. Tra…

NeRF室内重建对比:Nerfstudio vs. Luma AI vs. Instant-NGP

十年前&#xff0c;Matterport 改变了房地产业&#xff0c;让房地产买家可以进行数字旅游。 买家可以在房产内从一个点移动到另一个点并环顾四周。 与 2D 照片库相比&#xff0c;这是一个巨大的改进。 然而&#xff0c;买家仍然被房产内的一系列问题所困扰。 推荐&#xff1a;用…

rk3399移植linux kernel

rk3399移植linux kernel 0.前言一、移植ubuntu根文件系统二、移植linux1.支持NFS(可选)2.配置uevent helper3.支持etx4文件系统(默认已支持)4.配置DRM驱动5.有线网卡驱动6.无线网卡驱动 三、设备树四、内核镜像文件制作五、烧录六、总结 参考文章&#xff1a; 1.RK3399移植u-bo…

TypeScript 中【class类】与 【 接口 Interfaces】的联合搭配使用解读

导读&#xff1a; 前面章节&#xff0c;我们讲到过 接口&#xff08;Interface&#xff09;可以用于对「对象的形状&#xff08;Shape&#xff09;」进行描述。 本章节主要介绍接口的另一个用途&#xff0c;对类的一部分行为进行抽象。 类配合实现接口 实现&#xff08;impleme…

如何用正确的姿势监听Android屏幕旋转

作者&#xff1a;37手游移动客户端团队 背景 关于个人&#xff0c;前段时间由于业务太忙&#xff0c;所以一直没有来得及思考并且沉淀点东西&#xff1b;同时组内一个个都在业务上能有自己的思考和总结&#xff0c;在这样的氛围下&#xff0c;不由自主的驱使周末开始写点东西&…

QT生成Debug和Release发布版后,运行exe缺少dll问题

在QT Creator生成debug和release的exe执行文件后&#xff0c;运行时&#xff0c;报错缺少*.dll.解决办法1&#xff1a; 在系统环境变量中添加D:\Qt\Qt5.13.2\Tools\mingw730_64\bin后&#xff0c;即可运行。 当使用此方法时&#xff0c;将exe拷贝到其他电脑中运行时&#xff0c…

软件性能测试有哪些测试指标?性能测试报告对软件产品起到的作用

在软件开发过程中&#xff0c;性能测试是一个至关重要的环节&#xff0c;主要关注软件系统在不同负载条件下的表现&#xff0c;以评估其稳定性、可扩展性和响应能力。它可以帮助开发人员评估软件系统的质量和性能。 一、软件性能测试的测试指标 性能测试的测试指标直接影响着…

【代码解读】RRNet: A Hybrid Detector for Object Detection in Drone-captured Images

文章目录 1. train.py2. DistributedWrapper类2.1 init函数2.2 train函数2.3 dist_training_process函数 3. RRNetOperator类3.1 init函数3.1.1 make_dataloader函数 3.2 training_process函数3.2.1 criterion函数 4. RRNet类&#xff08;网络模型类&#xff09;4.1 init函数4.…

计算机视觉--距离变换算法的实战应用

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 计算机视觉CV是人工智能一个非常重要的领域。 在本次的距离变换任务中&#xff0c;我们将使用D4距离度量方法来对图像进行处理。通过这次实验&#xff0c;我们可以更好地理解距离度量在计算机视觉中的应用。希望大家对计算…

IPC之一:使用匿名管道进行父子进程间通信的例子

IPC 是 Linux 编程中一个重要的概念&#xff0c;IPC 有多种方式&#xff0c;本文主要介绍匿名管道(又称管道、半双工管道)&#xff0c;尽管很多人在编程中使用过管道&#xff0c;但一些特殊的用法还是鲜有文章涉及&#xff0c;本文给出了多个具体的实例&#xff0c;每个实例均附…

Maven的<relativePath/>标签

maven配置文件 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.4.3</version><relativePath/> <!-- lookup parent from repository --> </p…

CentOS 7 构建 LVS-DR 群集 nginx负载均衡

1、基于 CentOS 7 构建 LVS-DR 群集。 DS&#xff08;Director Server&#xff09;&#xff1a;DIP 192.168.231.132 & VIP 192.168.231.200 [root132 ~]# nmcli c show NAME UUID TYPE DEVICE ens33 c89f4a1a-d61b-4f24-a260…

AIGC:【LLM(四)】——LangChain+ChatGLM:本地知识库问答方案

文章目录 一.文件加载与分割二.文本向量化与存储1.文本向量化(embedding)2.存储到向量数据库 三.问句向量化四.相似文档检索五.prompt构建六.答案生成 LangChainChatGLM项目(https://github.com/chatchat-space/langchain-ChatGLM)实现原理如下图所示 (与基于文档的问答 大同小…

Python连接Hive实例教程

一 Python连接hive环境实例 经在网络查询相关的教程&#xff0c;发现有好多的例子&#xff0c;发现连接底层用的的驱动基本都是pyhive和pyhs2两种第三方库的来连接的 hive,下面将简介windows 10 python 3.10 连接hive的驱动程序方式&#xff0c;开发工具&#xff1a;pycharm …

Vue计算属性computed的使用;methods VS 计算属性;侦听器watch;侦听器watch的配置选项

目录 1_computed计算属性使用1.1_复杂data的处理方式1.2_计算属性computed1.3_计算属性 vs methods1.4_计算属性的setter和getter&#xff08;了解&#xff09; 2_侦听器watch2.1_认识2.2_侦听器watch的配置选项 1_computed计算属性使用 1.1_复杂data的处理方式 在模板中可以…

架构实践方法

一、识别复杂度 将主要的复杂度问题列出来&#xff0c;然后根据业务、技术、团队等综合情况进行排序&#xff0c;优先解决当前面临的最主要的复杂度问题。对于按照复杂度优先级解决的方式&#xff0c;存在一个普遍的担忧&#xff1a;如果按照优先级来解决复杂度&#xff0c;可…

List list=new ArrayList()抛出的ArrayIndexOutOfBoundsException异常

1.应用场景&#xff0c;今天生产日志监控到一组new ArrayList() 进行add 异常&#xff0c;具体日志如下&#xff1a; eptionHandler.handler(178): TXXYBUSSINESS|执行异常 java.util.concurrent.CompletionException: java.lang.ArrayIndexOutOfBoundsException: Index 1 out…

银河麒麟QT连接DM8数据库

1. 安装达梦8 官网下载, 按照官方文档进行安装即可. 2. 安装unixodbc 1> 下载odbc安装包 unixODBC-2.3.7pre.tar.gz 2> 解压 tar -xvf unixODBC-2.3.7pre.tar.gz3> 编译 ./configure -prefix /usr/local make && make install4> 查找配置 odbcinst -j5…

【从零学习python 】04. Python编程基础:变量、数据类型与标识符

文章目录 变量以及数据类型一、变量的定义二、变量的类型三、查看数据类型 标识符和关键字标识符命名规则命名规范 关键字进阶案例 变量以及数据类型 一、变量的定义 对于重复使用&#xff0c;并且经常需要修改的数据&#xff0c;可以定义为变量&#xff0c;来提高编程效率。…