文章目录
- 一、固定模糊度的前置工作
- 1. 做好固定模糊度的准备
- 2. 建立双差模糊度
- 3. 问题与总结
版权声明:本文为原创文章,版权归 Winston Qu 所有,转载请注明出处。
在上一篇文章中,介绍了RTKLIB中manage_amb_LAMBDA()
函数,并详细介绍了其操作方式和工作方法。可见[RTKLIB]模糊度固定相关问题(一)
本篇文章中,我们针对其模糊度固定函数resamb_LAMBDA()
、ddidx()
做详细的分析,进一步的探索模糊度固定中有意思的部分。
一、固定模糊度的前置工作
1. 做好固定模糊度的准备
在前一篇文中我们说到,为了提高浮点模糊度的固定率,进行了部分模糊度*、延迟上星的操作。但究其根本,还没有真正接触到模糊度固定的底层,并没有创建模糊度双差数组,也没有去建立模糊度求解的矩阵方程,更还没尝试通过整数最小二乘方法去固定模糊度。
模糊度固定是一个比较复杂和繁琐的过程,前期会有许多的准备过程。从状态量中提取我们需要的状态,通过方差-协方差阵计算我们需要的Q矩阵。然后通过LAMBDA方法去求解固定后的状态向量,并通过一定的方法转换到单差模糊度,修正已有状态量。… 上述过程听着就挺复杂的,我们可以通过函数仔细看看做了哪些工作,从中理解设计和求解的思想。
附上源代码:
/* resolve integer ambiguity by LAMBDA ---------------------------------------*/
static int resamb_LAMBDA(rtk_t *rtk, double *bias, double *xa,int gps,int glo,int sbs)
{prcopt_t *opt=&rtk->opt;int i,j,nb,nb1,info,nx=rtk->nx,na=rtk->na;double *DP,*y,*b,*db,*Qb,*Qab,*QQ,s[2];int *ix;double var=0,coeff[3];double QQb[MAXSAT];trace(3,"resamb_LAMBDA : nx=%d\n",nx);rtk->sol.ratio=0.0;rtk->nb_ar=0;if (rtk->opt.mode<=PMODE_DGPS||rtk->opt.modear==ARMODE_OFF||rtk->opt.thresar[0]<1.0) {return 0;}/* skip AR if position variance too high to avoid false fix */for (i=0;i<3;i++) var+=rtk->P[i+i*rtk->nx];var=var/3.0; /* maintain compatibility with previous code */trace(3,"posvar=%.6f\n",var);if (var>rtk->opt.thresar[1]) {errmsg(rtk,"position variance too large: %.4f\n",var);return 0;}/* Create index of single to double-difference transformation matrix (D')used to translate phase biases to double difference */ix=imat(nx,2);if ((nb=ddidx(rtk,ix,gps,glo,sbs))<(rtk->opt.minfixsats-1)) { /* nb is sat pairs */errmsg(rtk,"not enough valid double-differences\n");free(ix);return -1; /* flag abort */}rtk->nb_ar=nb;/* nx=# of float states, na=# of fixed states, nb=# of double-diff phase biases */y=mat(nb,1); DP=mat(nb,nx-na); b=mat(nb,2); db=mat(nb,1); Qb=mat(nb,nb);Qab=mat(na,nb); QQ=mat(na,nb);/* phase-bias covariance (Qb) and real-parameters to bias covariance (Qab) *//* y=D*xc, Qb=D*Qc*D', Qab=Qac*D' */for (i=0;i<nb;i++) {y[i]=rtk->x[ix[i*2]]-rtk->x[ix[i*2+1]];}for (j=0;j<nx-na;j++) for (i=0;i<nb;i++) {DP[i+j*nb]=rtk->P[ix[i*2]+(na+j)*nx]-rtk->P[ix[i*2+1]+(na+j)*nx];}for (j=0;j<nb;j++) for (i=0;i<nb;i++) {Qb[i+j*nb]=DP[i+(ix[j*2]-na)*nb]-DP[i+(ix[j*2+1]-na)*nb];}for (j=0;j<nb;j++) for (i=0;i<na;i++) {Qab[i+j*na]=rtk->P[i+ix[j*2]*nx]-rtk->P[i+ix[j*2+1]*nx];}for (i=0;i<nb;i++) QQb[i]=1000*Qb[i+i*nb];trace(3,"N(0)= "); tracemat(3,y,1,nb,7,2);trace(3,"Qb*1000= "); tracemat(3,QQb,1,nb,7,4);/* lambda/mlambda integer least-square estimation *//* return best integer solutions *//* b are best integer solutions, s are residuals */if (!(info=lambda(nb,2,y,Qb,b,s))) {trace(3,"N(1)= "); tracemat(3,b ,1,nb,7,2);trace(3,"N(2)= "); tracemat(3,b+nb,1,nb,7,2);rtk->sol.ratio=s[0]>0?(float)(s[1]/s[0]):0.0f;if (rtk->sol.ratio>999.9) rtk->sol.ratio=999.9f;/* adjust AR ratio based on # of sats, unless minAR==maxAR */if (opt->thresar[5]!=opt->thresar[6]) {nb1=nb<50?nb:50; /* poly only fitted for upto 50 sat pairs *//* generate poly coeffs based on nominal AR ratio */for ((i=0);i<3;i++) {coeff[i] = ar_poly_coeffs[i][0];for ((j=1);j<5;j++)coeff[i] = coeff[i]*opt->thresar[0]+ar_poly_coeffs[i][j];}/* generate adjusted AR ratio based on # of sat pairs */rtk->sol.thres = coeff[0];for (i=1;i<3;i++) {rtk->sol.thres = rtk->sol.thres*1/(nb1+1)+coeff[i];}rtk->sol.thres = MIN(MAX(rtk->sol.thres,opt->thresar[5]),opt->thresar[6]);} elsertk->sol.thres=(float)opt->thresar[0];/* validation by popular ratio-test of residuals*/if (s[0]<=0.0||s[1]/s[0]>=rtk->sol.thres) {/* init non phase-bias states and covariances with float solution values *//* transform float to fixed solution (xa=xa-Qab*Qb\(b0-b)) */for (i=0;i<na;i++) {rtk->xa[i]=rtk->x[i];for (j=0;j<na;j++) rtk->Pa[i+j*na]=rtk->P[i+j*nx];}/* y = differences between float and fixed dd phase-biasesbias = fixed dd phase-biases */for (i=0;i<nb;i++) {bias[i]=b[i];y[i]-=b[i];}/* adjust non phase-bias states and covariances using fixed solution values */if (!matinv(Qb,nb)) { /* returns 0 if inverse successful *//* rtk->xa = rtk->x-Qab*Qb^-1*(b0-b) */matmul("NN",nb,1,nb, 1.0,Qb ,y,0.0,db); /* db = Qb^-1*(b0-b) */matmul("NN",na,1,nb,-1.0,Qab,db,1.0,rtk->xa); /* rtk->xa = rtk->x-Qab*db *//* rtk->Pa=rtk->P-Qab*Qb^-1*Qab') *//* covariance of fixed solution (Qa=Qa-Qab*Qb^-1*Qab') */matmul("NN",na,nb,nb, 1.0,Qab,Qb ,0.0,QQ); /* QQ = Qab*Qb^-1 */matmul("NT",na,na,nb,-1.0,QQ ,Qab,1.0,rtk->Pa); /* rtk->Pa = rtk->P-QQ*Qab' */trace(3,"resamb : validation ok (nb=%d ratio=%.2f thresh=%.2f s=%.2f/%.2f)\n",nb,s[0]==0.0?0.0:s[1]/s[0],rtk->sol.thres,s[0],s[1]);/* translate double diff fixed phase-bias values to single diff fix phase-bias values, result in xa */restamb(rtk,bias,nb,xa);}else nb=0;}else { /* validation failed */errmsg(rtk,"ambiguity validation failed (nb=%d ratio=%.2f thresh=%.2f s=%.2f/%.2f)\n",nb,s[1]/s[0],rtk->sol.thres,s[0],s[1]);nb=0;}}else {errmsg(rtk,"lambda error (info=%d)\n",info);nb=0;}free(ix);free(y); free(DP); free(b); free(db); free(Qb); free(Qab); free(QQ);return nb; /* number of ambiguities */
}
我们来拆解步骤,并给出详细的解释。
- 准入条件判断,根据定为模式、位置方差判断当前是否适合进入模糊度固定。
ps:可以想想如果位置方差很大,为什么不适合进入模糊度固定呢?
- 申请了一个
im=(nx,2)
的空间,用于保存构建双差浮点模糊度的索引值。之后通过ddidx()
函数构建了双差浮点模糊度矩阵,在此处做了一个模糊度个数的判断,判断是否小于设定的最小固定卫星。ps:若出现三颗三频的卫星,此处的nb=(3-1)*3=6,确实满足最小卫星>4的条件,但是此处的固定是否有意义呢?我觉得这是一个版本迭代的BUG
- 根据公式计算双差浮点模糊度
y
、双差协方差矩阵Qb
、双差实参协方差矩阵Qab
。ps:如果从理论角度来说,在此处我们需要求四个矩阵,分别为Qa、Qab、Qba、Qb,但实质上我们只用到Qb、Qab就能完成整个计算流程。
- 输出固定前的浮点双差模糊度
N(0)
和模糊度的方差Qb*1000
,在调试模糊度固定的时候,这两个值是非常重要的两个值。 - 使用
lambda()
函数进行浮点双差模糊度的固定,如果解算失败就释放申请的内存;若解算成功,则进行ratio test
。ps:这里的解算成功不是指成功求解整数模糊度,而是指成功进行lambda()解算
- 输出计算过后的整数双差模糊度的最优解和次优解,如果设置了动态AR阈值,还需要根据卫星数计算模糊度阈值。
- 进行
ratio test
判断模糊度最优解与次优解的残差是否合规,模糊度是否可以被采纳。 - 将计算的整数双差模糊度通过计算更新到固定解位置和相应的方差-协方差解算矩阵上,并通过
restamb()
函数将整数双差模糊度转换到对应的浮点单差模糊度。ps:保存在xa变量中了,此处的restamb()与ddidx()互为反映射关系
- 返回模糊度个数
nb
。
2. 建立双差模糊度
如果要进行模糊度解算,肯定需要在系统中简历双差模糊度方程,如何做双差?选择怎样的卫星作为第一颗卫星?其中的奥秘都集中在ddidx()
函数中。
附上源代码:
/* index for single to double-difference transformation matrix (D') --------------------*/
static int ddidx(rtk_t *rtk, int *ix, int gps, int glo, int sbs)
{int i,j,k,m,f,n,nb=0,na=rtk->na,nf=NF(&rtk->opt),nofix;double fix[MAXSAT],ref[MAXSAT];trace(3,"ddmat: gps=%d/%d glo=%d/%d sbs=%d\n",gps,rtk->opt.gpsmodear,glo,rtk->opt.glomodear,sbs);/* clear fix flag for all sats (1=float, 2=fix) */for (i=0;i<MAXSAT;i++) for (j=0;j<NFREQ;j++) {rtk->ssat[i].fix[j]=0;}for (m=0;m<6;m++) { /* m=0:GPS/SBS,1:GLO,2:GAL,3:BDS,4:QZS,5:IRN *//* skip if ambiguity resolution turned off for this sys */nofix=(m==0&&gps==0)||(m==1&&glo==0)||(m==3&&rtk->opt.bdsmodear==0); /* step through freqs */ for (f=0,k=na;f<nf;f++,k+=MAXSAT) {/* look for first valid sat (i=state index, i-k=sat index) */for (i=k;i<k+MAXSAT;i++) {/* skip if sat not active */if (rtk->x[i]==0.0||!test_sys(rtk->ssat[i-k].sys,m)||!rtk->ssat[i-k].vsat[f]) {continue;}/* set sat to use for fixing ambiguity if meets criteria */if (rtk->ssat[i-k].lock[f]>=0&&!(rtk->ssat[i-k].slip[f]&2)&&rtk->ssat[i-k].azel[1]>=rtk->opt.elmaskar&&!nofix) {rtk->ssat[i-k].fix[f]=2; /* fix */break;/* break out of loop if find good sat */}/* else don't use this sat for fixing ambiguity */else rtk->ssat[i-k].fix[f]=1;}if (rtk->ssat[i-k].fix[f]!=2) continue; /* no good sat found *//* step through all sats (j=state index, j-k=sat index, i-k=first good sat) */for (n=0,j=k;j<k+MAXSAT;j++) {if (i==j||rtk->x[j]==0.0||!test_sys(rtk->ssat[j-k].sys,m)||!rtk->ssat[j-k].vsat[f]) {continue;}if (sbs==0 && satsys(j-k+1,NULL)==SYS_SBS) continue; if (rtk->ssat[j-k].lock[f]>=0&&!(rtk->ssat[j-k].slip[f]&2)&&rtk->ssat[j-k].vsat[f]&&rtk->ssat[j-k].azel[1]>=rtk->opt.elmaskar&&!nofix) {/* set D coeffs to subtract sat j from sat i */ix[nb*2 ]=i; /* state index of ref bias */ix[nb*2+1]=j; /* state index of target bias *//* inc # of sats used for fix */ref[nb]=i-k+1;fix[nb++]=j-k+1;rtk->ssat[j-k].fix[f]=2; /* fix */n++; /* count # of sat pairs for this freq/constellation */}/* else don't use this sat for fixing ambiguity */else rtk->ssat[j-k].fix[f]=1;}/* don't use ref sat if no sat pairs */if (n==0) rtk->ssat[i-k].fix[f]=1;}}if (nb>0) {trace(3,"refSats=");tracemat(3,ref,1,nb,7,0);trace(3,"fixSats=");tracemat(3,fix,1,nb,7,0);}return nb;
}
我们来拆解步骤,并给出详细的解释。
- 对所有的卫星
rtk->ssat[i].fix[j]
结构体进行清空,进行初始化。 - 对每个星座的每个频率进行双重循环,确定每个星座和每个频率中的参考卫星
第一颗符合规定的卫星
,对符合条件的卫星设定rtk->ssat[i-k].fix[f]=2; /* fix */
,对有载波观测值但不符合条件的卫星设定rtk->ssat[i-k].fix[f]=1;
完成卫星清洗工作,选出参考卫星。ps:本段存在很大的问题,在后面详细叙述。
- 上一个循环已经确定了参考卫星,在这个循环中确定同星座同频率的非参考卫星,与参考卫星组
pairs
,并记录对应的索引号、卫星号。 - 返回双差
卫星(模糊度)个数。
3. 问题与总结
通过上述的两个函数,我们就完成了除整数最小二乘(LAMBDA)外的所有模糊度固定的流程。表面上似乎没问题,但通过仔细的解析和细细回味,可以发现很多不合理的地方。
- 选择参考星的时候,并没有选择高度角最高的卫星;
ps:这个问题其实困扰我一段时间了,似乎如果只更新xa、xp,选择高度角最高的卫星和系统内的第一颗卫星并没有很大的差别
- 双差模糊度
nb
和参与计算的卫星ns
之争。在上述的代码中,使用nb
判断这次解算是否有效,这似乎是一个随着版本迭代的bug。在单频状态下,nb
确实可以代表参与解算的卫星数,但随着频率的增加,多频模糊度固定时,nb
的数量可能会很大,但是真实参与解算和固定的卫星ns
可能不满足固定的最小卫星数,此时固定的解算结果有意义吗?ps:通过固定的模糊度修正的nx实际上是秩亏的,个人认为是不正确的。
- restamb()与ddidx()互为映射关系,但其中的判断条件太简单了,且需要丰富判断条件。
版权声明:本文为原创文章,版权归 Winston Qu 所有,转载请注明出处。