计算机视觉--距离变换算法的实战应用

在这里插入图片描述

前言: Hello大家好,我是Dream。 计算机视觉CV是人工智能一个非常重要的领域。 在本次的距离变换任务中,我们将使用D4距离度量方法来对图像进行处理。通过这次实验,我们可以更好地理解距离度量在计算机视觉中的应用。希望大家对计算机视觉和图像处理有了更深入的了解。让我们一起来看看实际的计算结果和可视化效果吧!

距离变换是一种常用的方法,它可以帮助我们计算出每个像素点与最近的前景像素点之间的距离。这对于图像分析、目标检测和图像配准等任务至关重要。D4距离定义为两个像素点之间在水平和垂直方向上的绝对距离之和。通过这种度量方式,我们可以获得每个像素点到最近的前景像素点的距离。为了测试距离变换的效果,我们首先随机生成了一张8*8大小的图像,并随机选取了其中的10个像素点作为前景像素。前景像素用1表示,背景像素用0表示。接下来,我们实现了一个距离函数,用于计算两个像素点之间的D4距离。然后,我们通过遍历图像中的每个像素点,计算其与与其最近的前景像素点的距离,并将结果保存到一个距离矩阵中。最后,我们将原始图像和距离变换后的结果进行可视化展示。使用灰度图像表示原始图像,黑色像素点表示随机生成的前景像素点。而距离变换结果则使用“cool”颜色映射进行显示,较远的像素点呈现较浅的颜色,较近的像素点呈现较深的颜色。

1. 导入必要的库

首先,我们需要导入必要的库,NumPy和Matplotlib库。

import numpy as np
import matplotlib.pyplot as plt

2. 生成随机图像,定义距离度量

随机生成 0/1 像素值的图片,大小为 8*8,0 为背景像素,1 为前景像素

image = np.random.randint(2, size=(8, 8))
print('原始图片:\n', image)

在这里插入图片描述
随机选取 10 个前景像素:

for i in range(10):x, y = np.random.randint(8, size=2)image[x, y] = 1print('选取前景像素后的图片:\n', image)

选取前景像素后的图片:
[[1 0 1 1 0 1 0 1]
[0 1 1 0 1 0 0 0]
[1 1 1 1 1 1 0 1]
[0 0 1 0 1 0 1 0]
[0 1 1 0 0 1 0 1]
[0 1 1 1 1 1 1 1]
[1 1 1 1 1 0 1 1]
[0 1 0 1 0 0 1 1]]

3. 进行距离变换

D4距离介绍: 像素p(x,y)和q(s,t)之间的D4距离定义为: = |x – s| + |y – t|
D4距离变换算法是一种常用的图像处理算法,用于计算图像中像素点与最近的前景像素点之间的距离。
在D4距离变换算法中,D4代表了四邻域距离度量。它仅考虑像素点之间在水平和垂直方向上的差异,而忽略了对角线方向上的差异

算法步骤如下:

  1. 初始化一个与原始图像大小相同的距离矩阵,其中所有背景像素点的距离值为0。
  2. 从图像中选择一个前景像素点作为起点。
  3. 遍历图像中的每个背景像素点,并计算其到起点像素点的D4距离。
  4. 比较当前像素点与起点之间的距离与之前计算得到的最小距离,如果当前距离更小,则更新该像素点的距离值为当前距离。
  5. 重复第3步和第4步,直到遍历完所有的背景像素点。
  6. 选择下一个前景像素点作为起点,重复以上步骤,直到遍历完所有的前景像素点。
  7. 最终得到的距离矩阵即为距离变换后的结果,其中每个像素点的距离值表示该像素点到离它最近的前景像素点的距离。

定义距离函数

def dist(p1, p2, metric='D4'):if metric == 'D4':return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1])elif metric == 'D8':return max(abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))

生成距离矩阵

matrix = np.zeros_like(image)
for i in range(image.shape[0]):for j in range(image.shape[1]):# 背景像素的距离为 0if image[i, j] == 0:matrix[i, j] = 0else:  # 初始化为一个巨大的数字min_dist = 99999           for m in range(image.shape[0]):for n in range(image.shape[1]):# 只计算背景像素的距离if image[m, n] == 0:d = dist((i, j), (m, n), metric='D4')if d < min_dist:min_dist = dmatrix[i, j] = min_distprint('距离变换后的结果:\n', matrix)

距离变换后的结果:
[[1 0 1 1 0 1 0 1]
[0 1 1 0 1 0 0 0]
[1 1 2 1 2 1 0 1]
[0 0 1 0 1 0 1 0]
[0 1 1 0 0 1 0 1]
[0 1 2 1 1 1 1 2]
[1 2 1 2 1 0 1 2]
[0 1 0 1 0 0 1 2]]

4. 可视化处理

在这里,我们使用灰度图像表示原始图像,黑色像素点表示随机生成的像素点。使用“cool”颜色映射可视化距离变换的结果。
Original Image

plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.show()

在这里插入图片描述
Distance Transformed Image

plt.imshow(matrix, cmap='cool')
plt.title('Distance Transformed Image')
plt.colorbar()
plt.show()

在这里插入图片描述
本文介绍了计算机视觉中的距离度量,并使用随机生成的像素点进行了测试,并对计算结果进行了可视化展示。下面我会继续扩充一下这篇文章。

5. 结果分析

通过上述代码,我们可以得到距离变换后的结果。在结果中,黑色像素点表示随机生成的前景像素点,其他颜色表示每个像素点到最近的前景像素点的距离。我们可以看到,距离变换后的图像可以清晰地展示出各个像素点到前景像素点的距离信息。较远的像素点呈现较浅的颜色,而较近的像素点呈现较深的颜色。

总结

距离度量在计算机视觉CV领域有着广泛的应用。如图像分割、图像配准、目标检测和目标跟踪等任务中,都需要计算像素之间的距离来对图像进行处理和分析。而距离变换则可以帮助我们更好地理解像素之间的关系和结构,并为后续的图像处理工作提供基础和参考。

本期推荐:
Python自动化办公应用大全(ChatGPT版):从零开始教编程小白一键搞定烦琐工作(上下册)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27620.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IPC之一:使用匿名管道进行父子进程间通信的例子

IPC 是 Linux 编程中一个重要的概念&#xff0c;IPC 有多种方式&#xff0c;本文主要介绍匿名管道(又称管道、半双工管道)&#xff0c;尽管很多人在编程中使用过管道&#xff0c;但一些特殊的用法还是鲜有文章涉及&#xff0c;本文给出了多个具体的实例&#xff0c;每个实例均附…

CentOS 7 构建 LVS-DR 群集 nginx负载均衡

1、基于 CentOS 7 构建 LVS-DR 群集。 DS&#xff08;Director Server&#xff09;&#xff1a;DIP 192.168.231.132 & VIP 192.168.231.200 [root132 ~]# nmcli c show NAME UUID TYPE DEVICE ens33 c89f4a1a-d61b-4f24-a260…

AIGC:【LLM(四)】——LangChain+ChatGLM:本地知识库问答方案

文章目录 一.文件加载与分割二.文本向量化与存储1.文本向量化(embedding)2.存储到向量数据库 三.问句向量化四.相似文档检索五.prompt构建六.答案生成 LangChainChatGLM项目(https://github.com/chatchat-space/langchain-ChatGLM)实现原理如下图所示 (与基于文档的问答 大同小…

Python连接Hive实例教程

一 Python连接hive环境实例 经在网络查询相关的教程&#xff0c;发现有好多的例子&#xff0c;发现连接底层用的的驱动基本都是pyhive和pyhs2两种第三方库的来连接的 hive,下面将简介windows 10 python 3.10 连接hive的驱动程序方式&#xff0c;开发工具&#xff1a;pycharm …

架构实践方法

一、识别复杂度 将主要的复杂度问题列出来&#xff0c;然后根据业务、技术、团队等综合情况进行排序&#xff0c;优先解决当前面临的最主要的复杂度问题。对于按照复杂度优先级解决的方式&#xff0c;存在一个普遍的担忧&#xff1a;如果按照优先级来解决复杂度&#xff0c;可…

List list=new ArrayList()抛出的ArrayIndexOutOfBoundsException异常

1.应用场景&#xff0c;今天生产日志监控到一组new ArrayList() 进行add 异常&#xff0c;具体日志如下&#xff1a; eptionHandler.handler(178): TXXYBUSSINESS|执行异常 java.util.concurrent.CompletionException: java.lang.ArrayIndexOutOfBoundsException: Index 1 out…

银河麒麟QT连接DM8数据库

1. 安装达梦8 官网下载, 按照官方文档进行安装即可. 2. 安装unixodbc 1> 下载odbc安装包 unixODBC-2.3.7pre.tar.gz 2> 解压 tar -xvf unixODBC-2.3.7pre.tar.gz3> 编译 ./configure -prefix /usr/local make && make install4> 查找配置 odbcinst -j5…

【从零学习python 】04. Python编程基础:变量、数据类型与标识符

文章目录 变量以及数据类型一、变量的定义二、变量的类型三、查看数据类型 标识符和关键字标识符命名规则命名规范 关键字进阶案例 变量以及数据类型 一、变量的定义 对于重复使用&#xff0c;并且经常需要修改的数据&#xff0c;可以定义为变量&#xff0c;来提高编程效率。…

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III

代码随想录算法训练营第51天&#xff5c;动态规划part09&#xff5c;198.打家劫舍、213.打家劫舍II、337.打家劫舍III 198.打家劫舍 198.打家劫舍 思路&#xff1a; 仔细一想&#xff0c;当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。 所以这里就更感觉到&a…

鉴源论坛·观模丨形式化方法的工业应用:轨交领域

作者 | 王依玲 上海控安可信软件创新研究院系统建模组 版块 | 鉴源论坛 观模 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” 引言&#xff1a;前面几期文章介绍了形式化方法的发展历史和具体技术&#xff0c;并从整体的角度介绍了形式化方法的工程化。本…

SpringBoot 的事务及使用

一、事务的常识 1、事务四特性&#xff08;ACID&#xff09; A 原子性&#xff1a;事务是最小单元,不可再分隔的一个整体。C 一致性&#xff1a;事务中的方法要么同时成功,要么都不成功,要不都失败。I 隔离性&#xff1a;多个事务操作数据库中同一个记录或多个记录时,对事务进…

TikTok推出PrivacyGo,品牌可与平台共享部分用户数据

1.TikTok宣布允许用户关闭内容自动显示功能 TikTok近日宣布修改运营方式&#xff0c;即允许用户关闭内容自动显示功能&#xff0c;以遵守将于8月底生效的欧盟新规定&#xff08;欧盟数字服务法案DSA&#xff09;&#xff0c;该法案对平台提出了新的要求&#xff0c;以更好地保…

.NET 应用程序 部署

**硬件支持型号 点击 查看 硬件支持 详情** DTU701 产品详情 DTU702 产品详情 DTU801 产品详情 DTU802 产品详情 DTU902 产品详情 G5501 产品详情 本文内容 在设备上部署 dotnet应用&#xff0c;与任何其他平台的部署相同&#xff0c;可以2种方式&#xff1a; 依赖于框…

适配器模式来啦

网上的大多数的资料中适配器模式和代理模式都是紧挨着进行介绍的&#xff0c;为什么呢&#xff1f;&#xff1f;&#xff1f; 是因为适配器模式和代理模式有太多的相似之处&#xff0c;可以进行联动记忆但是也要做好区分。 在菜鸟教程中&#xff0c;适配器模式的定义是作为两…

数学类问题(Leetcode)

1.质数数量 nullhttps://leetcode.cn/problems/count-primes/description/解题思路&#xff1a; 遍历大于1 且小于n的每个数的倍数&#xff0c;设置为非质数&#xff0c;剩下的就都是质数了。 代码&#xff1a; class Solution { public:int countPrimes(int n) {if(n<2)…

【机器学习2】什么是Jupyter notebook 新手使用Jupter notebook

什么是Jupyter notebook? Jupyter Notebook&#xff08;此前被称为 IPython notebook&#xff09;是一个交互式笔记本&#xff0c;支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序&#xff0c;便于创建和共享程序文档&#xff0c;支持实时代码&#x…

机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归)

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归)&#xff0c;这几天引爆网络的科技大新闻就是韩国科研团队宣称发现了室温超导材料-LK-99&#xff0c;这种材料…

Redisson 3.23.1 正式发布,官方推荐的 Redis 客户端

导读Redisson 3.23.1 现已发布&#xff0c;这是一个 Java 编写的 Redis 客户端&#xff0c;具备驻内存数据网格&#xff08;In-Memory Data Grid&#xff09;功能&#xff0c;并获得了 Redis 的官方推荐。 此版本更新内容如下&#xff1a; Improvement 减少了 RLiveObjectSer…

决策树和随机森林对比

1.用accuracy来对比 # -*-coding:utf-8-*-""" accuracy来对比决策树和随机森林 """ from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_wine#(178, 13…

K8S系列文章之 自动化运维利器 Ansible

Ansible-安装 第一步&#xff1a;安装我们的epel扩展源 yum -y install epel-release 我这里会报/var/run/yum.pid 已被锁定&#xff0c;如果没有直接进行下一步 [rootmaster home]# yum -y install epel-release 已加载插件&#xff1a;fastestmirror, langpacks /var/run/…