算法的时间复杂度和空间复杂度

目录

前言:

        ✨什么是数据结构?

       ✨ 什么是算法?

        ✨数据结构和算法的重要性

🍑算法的时间复杂度和空间复杂度  

算法效率

🎉时间复杂度

2.1 时间复杂度的概念

2.2 大O的渐进表示法

🎉空间复杂度


前言:

什么是数据结构?

数据结构是计算机科学中研究数据组织方式的一门学科。它主要研究如何将数据以某种逻辑方式组织和存储,以便更有效地访问和修改。一些常见的数据结构包括数组、链表、栈、队列、树和图等。了解数据结构可以帮助我们更好地设计和实现算法,以及优化程序的效率。

什么是算法?

算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来输入数据转化成输出结果。

 数据结构和算法的重要性

  • 提供高效的解决方案

算法和数据结构是为了提供高效的解决方案而设计的。它们提供了各种数据结构和算法,可以在特定的时间复杂度内完成任务。高效的算法和数据结构可以节省计算机资源,提高程序的性能。

  • 提高编程技能

数据结构和算法是编程的核心概念。掌握这些概念可以提高编程技能和编程能力。它们可以帮助程序员设计更好的程序结构,熟悉常见编程问题的解决方案,以及在编写代码时注意效率。

  • 推动新技术的发展

许多新技术都基于数据结构和算法的概念。例如,人工智能和机器学习技术需要强大的算法和高效的数据结构来处理和分析大量数据。掌握数据结构和算法可以帮助人们更好地理解新技术,从而推动新技术的发展和应用。

  • 提高代码可读性和可维护性

数据结构和算法不仅可以提高程序的性能,还可以提高程序的可读性和可维护性。良好的程序结构和算法可以使代码更易于阅读和修改,同时也可以增强代码的可维护性。


算法的时间复杂度空间复杂度  

算法效率

算法的复杂度:

算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。
时间复杂度 主要衡量一个算法的运行快慢,而 空间复杂度 主要衡量一个算法运行所需要的额外空间 。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{for (int j = 0; j < N ; ++ j){++count;}
}for (int k = 0; k < 2 * N ; ++ k)
{++count;
}
int M = 10;
while (M--)
{++count;
}
printf("%d\n", count);
}

可以准确算出来嘛?

哈哈哈哈哈为了解决这个问题,我们的前辈想到了一个办法,就是计算算法的大概执行次数。

Func1 执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这 里我们使用大 O 的渐进表示法。

2.2 O的渐进表示法

实际中,我们计算时间复杂度时,我们其实不一定要计算精确的执行次数,而只需要大概执行次数那么这里我们使用大O的渐进表示法

推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为O(N^)
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)
即:抓大头,取决定性结果那一项。
 
2.3常见时间复杂度计算举例

实例1: 

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

 O(n)

实例2

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

 O(M+N)

特殊情况:

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

O(1)

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

O(N)

在实际中,一般情况关注的是算法的最坏运行情况,所以数组中搜索数据的时间复杂度为O(N)

时间复杂度计算时,是一个稳健保守预期

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

 O(N^2)

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

O(logN)

最坏情况,查找区间缩放只剩一个值时,就是最坏

最坏情况下查找多少次?除了多少次2,就查找了多少次

假设查找x次,2^x=N, x=logN

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

 O(N)

总结:递归算法时间复杂度是多次调用的次数累加

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

O(2^N)

思路:

1.实例 1 基本操作执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)
2. 实例 2 基本操作执行了 M+N 次,有两个未知数 M N ,时间复杂度为 O(N+M)
3. 实例 3 基本操作执行了 10 次,通过推导大 O 阶方法,时间复杂度为 O(1)
4. 实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最 坏,时间复杂度为 O(N^2)
6. 实例 6 基本操作执行最好 1 次,最坏 O(logN) 次,时间复杂度为 O(logN) ps logN 在算法分析中表示是底 数为2 ,对数为 N 。有些地方会写成 lgN 。(建议通过折纸查找的方式讲解 logN 是怎么计算出来的)
7. 实例 7 通过计算分析发现基本操作递归了 N 次,时间复杂度为 O(N)
8. 实例 8 通过计算分析发现基本操作递归了 2^N 次,时间复杂度为 O(2^N) 。(建议画图递归栈帧的二叉树 讲解)

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 额外 临时占用存储空间大小的量度
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是 变量的个数
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例2: 

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

实例3:v                                                                                                                                                                                                                                                                                  

(时间是累积的,一去不复返;

    空间是可以重复利用的)

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}
1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)
3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

 常见复杂度对比

 

例题

轮转数组 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27557.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux中安装jdk

Linux中安装jdk 操作步骤: 1、使用FinalShell自带的上传工具将jdk的二进制发布包上传到Linux 2、解压安装包&#xff0c;命令为tar -zxvf jdk-8u171-linux-x64.tar.gz -C/usr/local 3、配置环境变量&#xff0c;使用vim命令修改/etc/profile文件&#xff0c;在文件末尾加入如…

排序算法(九大)- C++实现

目录 基数排序 快速排序 Hoare版本&#xff08;单趟&#xff09; 快速排序优化 三数取中 小区间优化 挖坑法&#xff08;单趟&#xff09; 前后指针法&#xff08;单趟&#xff09; 非递归实现&#xff08;快排&#xff09; 归并排序 非递归实现&#xff08;归并&am…

2、简单上手+el挂载点+v-xx(v-text、v-html、v-on、v-show、v-if、v-bind、v-for)

官网&#xff1a; vue3&#xff1a;https://cn.vuejs.org/ vue2&#xff1a;https://v2.cn.vuejs.org/v2/guide/ 简单上手&#xff1a; 流程&#xff1a; 导入开发版本的Vue.js <!--开发环境版本&#xff0c;包含了有帮助的命令行警告--> <script src"https…

单片机开发 esp8266

一、固件界面 二、项目介绍 固件名称&#xff1a;esp8266-universalboard v1.0 提供商&#xff1a; 半条虫(466814195) 下载&#xff1a;esp8266-universalboard.bin 源码地址&#xff1a;Gitlab

【Python】Pandas 简介,数据结构 Series、DataFrame 介绍,CSV 文件处理,JSON 文件处理

序号内容1【Python】Pandas 简介&#xff0c;数据结构 Series、DataFrame 介绍&#xff0c;CSV 文件处理&#xff0c;JSON 文件处理2【Python】Pandas 数据清洗操作&#xff0c;常用函数总结 文章目录 1. Pandas 简介2. Pandas 数据结构1. Series&#xff08;一维数据&#xff…

CISCO MDS 9148 SAN Switch 交换机命令配置方法:

前言 CISCO MDS 9148 SAN 交换机已经停产&#xff0c;但还是要掌握一下配置的方法&#xff1a; 升级款后面 9148S 或者 9100系列&#xff0c;但配置方式基本都差不多&#xff0c;掌握一个就好&#xff1a; 高性能和极具吸引力的价值 Cisco MDS 9148S 16G 多层光纤交换机是下…

基于Orangepi 3 lts 的云台相机

利用orangepi 3 lts 和arduino nano 制作了一个云台相机&#xff0c;可用于室内监控。 硬件&#xff1a; orangepi 3 ,arduino nano ,usb相机&#xff0c;180度舵机两个 WeChat_20230806213004 软件&#xff1a; 整体采用mqtt进行消息的中转。 相机采用python 利用opencv…

数据结构——二叉树

本章代码仓库&#xff1a;堆、二叉树链式结构 文章目录 &#x1f36d;1. 树&#x1f9c1;1.1 树的概念&#x1f9c1;1.2 树的结构 &#x1f36c;2. 二叉树&#x1f36b;2.1 二叉树的概念&#x1f36b;2.2 特殊的二叉树&#x1f36b;2.3 二叉树的性质&#x1f36b;2.4 二叉树的存…

IMV8.0

一、背景内容 经历了多个版本&#xff0c;基础内容在前面&#xff0c;可以使用之前的基础环境&#xff1a; v1&#xff1a; https://blog.csdn.net/wtt234/article/details/132139454 v2&#xff1a; https://blog.csdn.net/wtt234/article/details/132144907 v3&#xff1a; h…

Unity 中检测射线穿过的所有的物体

在开发中 有个需求&#xff0c;射线要检测所有穿过的物体。 代码如下&#xff1a; using UnityEngine;public class HitCollider : MonoBehaviour {public float raycastDistance Mathf.Infinity;// Update is called once per framevoid Update(){Ray ray Camera.main.Scre…

【Spring Boot】Thymeleaf模板引擎 — Thymeleaf页面布局

Thymeleaf页面布局 熟悉Thymeleaf的语法和表达式后&#xff0c;后面开发起来会更加得心应手。接下来好好研究一下Thymeleaf如何实现完整的Web系统页面布局。 1.引入代码片段 在模板中经常希望包含来自其他模板页面的内容&#xff0c;如页脚、页眉、菜单等。为了做到这一点&a…

以产品经理的角度去讲解原型图---会议OA项目

目录 一.前言 二.原型图 2.1 原型图是什么 3.1 原型图的作用 三.演示讲解 3.1 项目背景 3.2 项目介绍 3.2.1 会议管理&#xff08;会议的发起&#xff0c;通知&#xff09; 3.2.2 投票管理&#xff08;会议的流程重大决策记录&#xff09; 3.2.3 会议室管理 3.2.4 系统管…

使用Beautiful Soup等三种方式定制Jmeter测试脚本

目录 背景介绍 实现思路 把脚本数据读出&#xff0c;使用正则表达式&#xff08;re库&#xff09;匹配关键数据进行修改 把脚本数据读出&#xff0c;使用BeautifulSoup的xml解析功能解析后修改 通过Beautiful Soup Beautiful Soup 具体实现 使用string.Template字符替换…

Air32 | 合宙Air001单片机内部FLASH读写示例

Air32 | 合宙Air001单片机内部FLASH读写示例 代码已经通过测试&#xff0c;开发环境KEIL-MDK 5.36。 测试代码 void FLASH_RdWrTest(void) {uint32_t Address;uint32_t PageReadBuffer[FLASH_PAGE_SIZE >> 2];uint32_t PageWriteBuffer[FLASH_PAGE_SIZE >> 2];mem…

b站视频标题的获取(xpath、jsonpath的一个简单应用)

目录 1.目的2.代码的演示 注&#xff1a;该篇文章为本人原创&#xff0c;由于本人学习有限&#xff0c;若有错误或者笔误或者有问题&#xff0c;欢迎大家进行批评指正&#xff0c;谢谢。 1.目的 在b站大学上&#xff0c;为了更好的写笔记&#xff0c;本人根据学到的Python(即Py…

springboot家政服务管理系统java家务保姆资源 jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 springboot家政服务管理系统 系统1权限&#xff1a;管…

挑战Open AI!!!马斯克宣布成立xAI.

北京时间7月13日凌晨&#xff0c;马斯克在Twitter上宣布&#xff1a;“xAI正式成立&#xff0c;去了解现实。”马斯克表示&#xff0c;推出xAI的原因是想要“了解宇宙的真实本质”。Ghat GPT横空出世已有半年&#xff0c;国内外“百模大战”愈演愈烈&#xff0c;AI大模型的现状…

nginx部署以及反向代理多域名实现HTTPS访问

nginx部署以及反向代理多域名实现 1.nginx部署 1.1 编写nginx部署文件 docker-compose.yml version: 3 services: nginx:restart: always image: nginx:1.20container_name: nginx-mainports:- 80:80- 443:443volumes: # 基础配置- /opt/nginx_main/nginx-info/nginx.conf:/…

【C++】STL——stack和queue的模拟实现、空间适配器、deque的介绍、增删查改函数的简单实现

文章目录 1.deque的简单介绍2.模拟实现stack3.模拟实现queue 1.deque的简单介绍 deque的介绍文档 deque(双端队列)&#xff1a;是一种双开口的"连续"空间的数据结构&#xff0c;双开口的含义是&#xff1a;可以在头尾两端进行插入和删除操作&#xff0c;且时间复杂度…

ElastAlert通过飞书机器人发送报警通知

前言 公司采用ELK架构搜集业务系统的运行日志&#xff0c;以前开发人员只有在业务出现问题的时候&#xff0c;才会去kibana上进行日志搜索操作&#xff0c;每次都是被用户告知系统出问题了&#xff0c;这简直是被啪啪打脸~ 于是痛定思痛&#xff0c;决定主动出击&#xff0c;…