STM32 时钟系统

STM32时钟系统的基本概念
概念及意义
(1)概念:时钟系统是由振荡器(信号源)、定时唤醒器、分频器等组成的电路。常用的信号源有晶体振荡器和RC振荡器。
(2)意义:时钟对数字电路而言非常重要,没有时钟数字电路就没法工作,其全称是时钟频率,一般由晶振来提供时钟频率。在数字电路中,所有数据、逻辑单元等状态的更新都是以时钟为基础的,时钟频率在数字电路中起着同步的作用。时钟是嵌入式系统的脉搏,处理器内核在时钟驱动下完成指令执行,状态变换等动作。外设部件在时钟的驱动下完成各种工作,比如串口的数据发送,A/D转化,定时器计数等。因此时钟对于计算机系统是至关重要的,通常时钟系统出现问题也是致命的,比如振荡器不起振,振荡不稳,停振等。

常见的时钟系统
(1)晶体振荡器

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛的应用于彩电、计算机等各类振荡电路中。
优点:相对来说振荡频率一般比较稳定,同时精度也比较高
缺点:价格稍微高点,还有用晶体振荡器一般还需要接两个15~33pF起振电容。

(2)RC振荡器

电阻电容构成的振荡电路,能够将直流电转化为具有一定频率交流信号输出的电子电路或装置
优点:实现的成本比较低,
缺点:由于电阻电容的精度问题所以RC振荡器的振荡频率会有误差,同时也会受到问题湿度的影响

STM32 的时钟系统图:
在这里插入图片描述
在这里插入图片描述 在 STM32 中,有五个时钟源,为 HSI、HSE、LSI、LSE、PLL。从时钟频率来分可以分为高速时钟源和低速时钟源,在这 5 个中 HIS,HSE 以及 PLL 是高速时钟,LSI 和 LSE 是低速时钟。从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中 HSE 和 LSE 是外部时钟源,其他的是内部时钟源。下面我们看看 STM32 的 5 个时钟源,我们讲解顺序是按图中红圈标示的顺序:

①、HSI 是高速内部时钟,RC 振荡器,频率为 8MHz。

②、HSE 是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。我们的开发板接的是 8M 的晶振。
③、LSI 是低速内部时钟,RC 振荡器,频率为40kHz。独立看门狗的时钟源只能是 LSI,同时 LSI 还可以作为 RTC 的时钟源。
④、LSE 是低速外部时钟,接频率为 32.768kHz 的石英晶体。这个主要是 RTC 的时钟源。
⑤、PLL 为锁相环倍频输出,其时钟输入源可选择为 HSI/2、HSE 或者 HSE/2。倍频可选择为2~16
倍,但是其输出频率最大不得超过 72MHz。

5 个时钟源是怎么给各个外设以及系统提供时钟的:
A. MCO 是 STM32 的一个时钟输出 IO(PA8),它可以选择一个时钟信号输出,可以选择为 PLL 输出的 2 分频、HSI、HSE、或者系统时钟。这个时钟可以用来给外部其他系统提供时钟源。

B. 这里是 RTC 时钟源,从图上可以看出,RTC 的时钟源可以选择 LSI,LSE,以及HSE 的 128 分频。

C. 从图中可以看出 C 处 USB 的时钟是来自 PLL 时钟源。STM32 中有一个全速功能的 USB 模块,其串行接口引擎需要一个频率为 48MHz 的时钟源。该时钟源只能从 PLL 输出端获取,可以选择为 1.5 分频或者 1 分频,也就是,当需要使用 USB模块时,PLL 必须使能,并且时钟频率配置为 48MHz 或72MHz。

D. D 处就是 STM32 的系统时钟 SYSCLK,它是供 STM32 中绝大部分部件工作的时钟源。系统时钟可选择为 PLL 输出、HSI 或者 HSE。系统时钟最大频率为 72MHz,当然你也可以超频,不过一般情况为了系统稳定性是没有必要冒风险去超频的。

E. 这里的 E 处是指其他所有外设了。从时钟图上可以看出,其他所有外设的时钟最终来源都是SYSCLK。SYSCLK 通过 AHB 分频器分频后送给各模块使用。这些模块包括:

  • AHB 总线、内核、内存和 DMA 使用的 HCLK 时钟。

  • 通过 8 分频后送给 Cortex 的系统定时器时钟,也就是 systick 了。

  • 直接送给 Cortex 的空闲运行时钟 FCLK。

  • 送给 APB1 分频器。APB1 分频器输出一路供 APB1 外设使用(PCLK1,最大频率 36MHz),另一路送给定时器(Timer)2、3、4 倍频器使用。

  • 送给 APB2 分频器。APB2 分频器分频输出一路供 APB2 外设使用(PCLK2,最大频率 72MHz),另一路送给定时器(Timer)1 倍频器使用。

其中需要理解的是 APB1APB2 的区别,APB1 上面连接的是低速外设,包括电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3 等等,APB2 上面连接的是高速外设包括 UART1、SPI1、Timer1、ADC1、ADC2、所有普通 IO 口(PA~PE)、第二功能 IO 口等。记忆方法是 2>1, APB2 下面所挂的外设的时钟要比 APB1 的高。

总结一下:
SystemInit()函数中设置的系统时钟大小:

  • SYSCLK(系统时钟) =72MHz

  • AHB 总线时钟(使用 SYSCLK) =72MHz

  • APB1 总线时钟(PCLK1) =36MHz

  • APB2 总线时钟(PCLK2) =72MHz

  • PLL 时钟 =72MHz

RCC相关配置寄存器:
在这里插入图片描述
RCC相关头文件和固件库源文件:
在这里插入图片描述
stm32独立看门狗和窗口看门狗的区别为:时钟源不同、中断不同、使用条件不同。
一、时钟源不同

  • stm32独立看门狗:stm32独立看门狗使用的是内部专门的 40Khz低速时钟,不需要使能时钟操作。
  • 窗口看门狗:窗口看门狗使用的是 PCLK1的时钟,使用前需要先使能时钟。

二、中断不同

  • stm32独立看门狗:stm32独立看门狗没有中断,超时直接位。
  • 窗口看门狗:窗口看门狗可以在中断中做位前的函数操作。

三、使用条件不同

  • stm32独立看门狗:stm32独立看门狗一般用于避免程序跑飞或者死循环。
  • 窗口看门狗:窗口看门狗避免程序不安预定逻辑执行,比如先于理想环境完成,或者后于极限时间超时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/272344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【转载】性能测试浅谈

本文主要针对WEB系统的性能测试。不涉及具体的执行操作,只是本人对性能测试的一点理解和认识。 性能测试的目的,简单说其实就是为了获取待测系统的响应时间、吞吐量、稳定性、容量等信息。而发现一些具体的性能相关的缺陷(如内存溢出、并发处…

SystemInit时钟系统初始化函数剖析

SystemInit()函数: void SystemInit (void) {/* Set HSION bit */RCC->CR | (uint32_t)0x00000001;//把内部的HSI RC(高速时钟)打开#ifndef STM32F10X_CLRCC->CFGR & (uint32_t)0xF8FF0000;//这一句不会执行…

火狐表格错乱兼容性问题

对于某一单元行需要显示时,使用CSS display:block属性,不需要显示时使用display:none属性,在IE浏览器中显示正常,没有任何问题,但是当用Firefox浏览时却出现了布局错乱的问题,这是为什么呢? 本文…

docker ps命令详解 列出运行中的容器

docker ps命令详解 列出运行中的容器 使用docker ps命令即可列出运行中的容器,执行该命令后,会出现如下7列表格 CONTAINER_ID 表示容器ID IMAGE 表示镜像名称 COMMAND 表示启动容器时运行的命令 CREATED …

Lattice 的 Framebuffer IP核使用调试笔记之datasheet笔记

本文由远航路上ing 原创,转载请标明出处。 学习使用以及调试Framebuffer IP 核已经有一段时间了,调试的时候总想记录些东西,可是忙的时候就没有时间来写,只有先找个地方记录下,以后再总结。所以找这个时间好好的记录学…

Systick滴答定时器寄存器、delay()延时函数、SysTick_Config函数

SysTick定时器 SysTick定时器,是一个简单的定时器,对于CM3、CM4内核的芯片都有SysTick定时器。SysTick 是一个 24 位的倒计数定时器,当计数到 0 时,将从RELOAD 寄存器中自动重装载定时初值,开始新一轮计数。只要不把它…

查看docker容器日志

1:实时查看docker容器id为 02c5ac132ee5 的最后10行日志 docker logs -f -t --tail 10 02c5ac132ee5 2:查看指定时间后的日志,只显示最后100行: docker logs -f -t --since"2020-02-14" --tail100 d7db22166a0a 3:查看最近20分钟的…

Web UI 自动化测试环境搭建 (转载自51测试天地第三十九期上)

1. 安装 Python 2.7 并设置系统环境变量 2. 下载并安装 python setuptools Easily download, build, install, upgrade, and uninstall Python packages https://pypi.python.org/pypi/setuptools#installation-instructions 2.1 找到ez_setup.py,点击右键--目标另存…

STM32F1 端口复用、端口(部分和完全)重映射

端口复用功能 STM32 有很多的内置外设(比如:串口、ADC、DAC等是独立的模块和内核连接在一起),这些外设的外部引脚都是与 GPIO 复用的。也就是说,一个 GPIO如果可以复用为内置外设的功能引脚,那么当…

docker启动容器后容器状态为Exited (137) 5 seconds ago

1:因为容器里的运行的代码报错了,然后容器 Exited (1) 3 seconds ago 了,通过 docker logs -f container_id 能看到哪里错了 容器桩体为exited,说明容器已经退出停止 先查看查看镜像id ps images 在后台运行一个容器 为了保证提…

ReflectionClass与Closure

<?php /*** Class A*/ class A{}$obj new ReflectionClass(A); var_export($obj.PHP_EOL); 类后面加上PHP_EOL会把当前类的详细接口文档打印出来。 ReflectionClass 可以利用这个动态创建类&#xff0c;动态使用类方法参数。 try{ //如果存在控制器名字的类 if(class_exis…

STM32中断优先级的管理(NVIC)

STM32 NVIC 中断优先级管理 CM3 内核支持 256 个中断&#xff0c;其中包含了 16 个内核中断和 240 个外部中断&#xff0c;并且具有 256级的可编程中断设置。STM32 并没有使用 CM3 内核的全部东西&#xff0c;而是只用了它的一部分。STM32 有 84 个中断&#xff0c;包括 16 个…

docker修改容器名字

查看一下容器的名字 这个laughing_elion是下载es时候默认的名字 修改容器名字 docker rename 容器原来名 要改为的名字 最后可以看到容器名已经修改成功

STM32 串行通信原理

处理器与外部设备通信的两种方式&#xff1a; 并行通信 传输原理&#xff1a;数据各个位同时传输。优点&#xff1a;速度快缺点&#xff1a;占用引脚资源多 串行通信 传输原理&#xff1a;数据按位顺序传输。优点&#xff1a;占用引脚资源少缺点&#xff1a;速度相对较慢 …

linus下centos7防火墙设置

CentOS7 默认使用firewalld防火墙&#xff0c;如果想换回iptables防火墙&#xff0c;可关闭firewalld并安装iptables。 1:安装firewalld服务 yum install firewalld 2、firewalld的基本使用 启动&#xff1a; systemctl start firewalld &#xff08;关闭后显示notrunning&a…

串口通信寄存器/库函数配置、实例编写

常用的串口相关寄存器 USART_SR状态寄存器USART_DR数据寄存器USART_BRR波特率寄存器 串口操作相关库函数&#xff08;省略入口参数&#xff09;&#xff1a; void USART_Init(); //串口初始化&#xff1a;波特率&#xff0c;数据字长&#xff0c;奇偶校验&#xff0c;硬件流…

使用docker安装Mongodb

下载mongo3.2的docker镜像&#xff1a; docker pull mongo:3.2 使用docker命令启动&#xff1a; docker run -p 27017:27017 --name mongo \ -v /mydata/mongo/db:/data/db \ -d mongo:3.2 查看已经成功启动

移动端meta标签

现在的手机或平板电脑等移动设备上的浏览器默认都有双击放大的设置&#xff0c;如何阻止双击放大&#xff1f;user-scalableno <!-- 禁止缩放 --> <meta name”viewport” content”widthdevice-width,initial-scale1.0,maximum-scale1.0,user-scalableno”> <!…

正点原子stm32--串口通信实验讲解里关于USART_RX_STA的问题与思考

这篇博文讲的挺详细的可以参考以下&#xff1a; USART_RX_STA详解

什么是真正的程序员?

什么是真正的程序员 这篇文章的原文来自&#xff1a;A Little Printf Story作者仿照《小王子》中的情节&#xff0c;通过小printf遇见的不同类型的程序员&#xff0c;最后悟出什么才是真正的程序员&#xff01;第一次翻译有很多不妥&#xff0c;欢迎留言指正。 文章略长&#x…