linux网络编程--线程池UDP

目录

学习目标

1线程池

2.UDP通信

3本地socket通信


学习目标

  • 了解线程池模型的设计思想
  • 能看懂线程池实现源码
  • 掌握tcpudp的优缺点和使用场景
  • 说出udp服务器通信流程
  • 说出udp客户端通信流程
  • 独立实现udp服务器代码
  • 独立实现udp客户端代码
  • 熟练掌握本地套接字进行本地进程通信

1线程池

什么是线程池?

是一个抽象的概念, 若干个线程组合到一起, 形成线程池.

为什么需要线程池?

多线程版服务器一个客户端就需要创建一个线程! 若客户端太多, 显然不太合适.

什么时候需要创建线程池呢?简单的说,如果一个应用需要频繁的创建和销毁线程,而任务执行的时间又非常短,这样线程创建和销毁的带来的开销就不容忽视,这时也是线程池该出场的机会了。如果线程创建和销毁时间相比任务执行时间可以忽略不计,则没有必要使用线程池了。

实现的时候类似于生产者和消费者.

线程池和任务池:

任务池相当于共享资源, 所以需要使用互斥锁, 当任务池中没有任务的时候需要让线程阻塞, 所以需要使用条件变量.

如何让线程执行不同的任务?

使用回到函数, 在任务中设置任务执行函数, 这样可以起到不同的任务执行不同的函数.

通过阅读线程池代码思考如下问题?

  • 熟悉结构体 threadpool_t
  • 线程池如何创建起来? 各种初始化,malloc,pthread_create,pthread_cond_init  pthread_mutex_init
  • 线程池内都有几类线程? 2类:管理线程+工作线程
  • 管理者线程的任务是什么?任务如何实现? 任务是添加线程或者删除线程,通过2个算法,删除线程 wait_exit_thr_num = 10
  • 工作线程如何工作? 等待有任务,抢到任务,修改busy_thr_num ++ 执行任务 修改 busy_thr_num --
  • 线程池是如何销毁的? 自爆shutdown 诱杀!
  • 讲解代码threadpoolsimple.c

    讲解代码 pthreadpool.c

threadsimplepool.h

#ifndef _THREADPOOL_H
#define _THREADPOOL_H#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <pthread.h>typedef struct _PoolTask
{int tasknum;//模拟任务编号void *arg;//回调函数参数void (*task_func)(void *arg);//任务的回调函数
}PoolTask ;typedef struct _ThreadPool
{int max_job_num;//最大任务个数int job_num;//实际任务个数PoolTask *tasks;//任务队列数组int job_push;//入队位置int job_pop;// 出队位置int thr_num;//线程池内线程个数pthread_t *threads;//线程池内线程数组int shutdown;//是否关闭线程池pthread_mutex_t pool_lock;//线程池的锁pthread_cond_t empty_task;//任务队列为空的条件pthread_cond_t not_empty_task;//任务队列不为空的条件}ThreadPool;void create_threadpool(int thrnum,int maxtasknum);//创建线程池--thrnum  代表线程个数,maxtasknum 最大任务个数
void destroy_threadpool(ThreadPool *pool);//摧毁线程池
void addtask(ThreadPool *pool);//添加任务到线程池
void taskRun(void *arg);//任务回调函数#endif

threadsimplepool.c

//简易版线程池
#include "threadpoolsimple.h"ThreadPool *thrPool = NULL;int beginnum = 1000;void *thrRun(void *arg)
{//printf("begin call %s-----\n",__FUNCTION__);ThreadPool *pool = (ThreadPool*)arg;int taskpos = 0;//任务位置PoolTask *task = (PoolTask *)malloc(sizeof(PoolTask));while(1){//获取任务,先要尝试加锁pthread_mutex_lock(&thrPool->pool_lock);//无任务并且线程池不是要摧毁while(thrPool->job_num <= 0 && !thrPool->shutdown ){//如果没有任务,线程会阻塞pthread_cond_wait(&thrPool->not_empty_task,&thrPool->pool_lock);}if(thrPool->job_num){//有任务需要处理taskpos = (thrPool->job_pop++)%thrPool->max_job_num;//printf("task out %d...tasknum===%d tid=%lu\n",taskpos,thrPool->tasks[taskpos].tasknum,pthread_self());//为什么要拷贝?避免任务被修改,生产者会添加任务memcpy(task,&thrPool->tasks[taskpos],sizeof(PoolTask));task->arg = task;thrPool->job_num--;//task = &thrPool->tasks[taskpos];pthread_cond_signal(&thrPool->empty_task);//通知生产者}if(thrPool->shutdown){//代表要摧毁线程池,此时线程退出即可//pthread_detach(pthread_self());//临死前分家pthread_mutex_unlock(&thrPool->pool_lock);free(task);pthread_exit(NULL);}//释放锁pthread_mutex_unlock(&thrPool->pool_lock);task->task_func(task->arg);//执行回调函数}//printf("end call %s-----\n",__FUNCTION__);
}//创建线程池
void create_threadpool(int thrnum,int maxtasknum)
{printf("begin call %s-----\n",__FUNCTION__);thrPool = (ThreadPool*)malloc(sizeof(ThreadPool));thrPool->thr_num = thrnum;thrPool->max_job_num = maxtasknum;thrPool->shutdown = 0;//是否摧毁线程池,1代表摧毁thrPool->job_push = 0;//任务队列添加的位置thrPool->job_pop = 0;//任务队列出队的位置thrPool->job_num = 0;//初始化的任务个数为0thrPool->tasks = (PoolTask*)malloc((sizeof(PoolTask)*maxtasknum));//申请最大的任务队列//初始化锁和条件变量pthread_mutex_init(&thrPool->pool_lock,NULL);pthread_cond_init(&thrPool->empty_task,NULL);pthread_cond_init(&thrPool->not_empty_task,NULL);int i = 0;thrPool->threads = (pthread_t *)malloc(sizeof(pthread_t)*thrnum);//申请n个线程id的空间pthread_attr_t attr;pthread_attr_init(&attr);pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);for(i = 0;i < thrnum;i++){pthread_create(&thrPool->threads[i],&attr,thrRun,(void*)thrPool);//创建多个线程}//printf("end call %s-----\n",__FUNCTION__);
}
//摧毁线程池
void destroy_threadpool(ThreadPool *pool)
{pool->shutdown = 1;//开始自爆pthread_cond_broadcast(&pool->not_empty_task);//诱杀 int i = 0;for(i = 0; i < pool->thr_num ; i++){pthread_join(pool->threads[i],NULL);}pthread_cond_destroy(&pool->not_empty_task);pthread_cond_destroy(&pool->empty_task);pthread_mutex_destroy(&pool->pool_lock);free(pool->tasks);free(pool->threads);free(pool);
}//添加任务到线程池
void addtask(ThreadPool *pool)
{//printf("begin call %s-----\n",__FUNCTION__);pthread_mutex_lock(&pool->pool_lock);//实际任务总数大于最大任务个数则阻塞等待(等待任务被处理)while(pool->max_job_num <= pool->job_num){pthread_cond_wait(&pool->empty_task,&pool->pool_lock);}int taskpos = (pool->job_push++)%pool->max_job_num;//printf("add task %d  tasknum===%d\n",taskpos,beginnum);pool->tasks[taskpos].tasknum = beginnum++;pool->tasks[taskpos].arg = (void*)&pool->tasks[taskpos];pool->tasks[taskpos].task_func = taskRun;pool->job_num++;pthread_mutex_unlock(&pool->pool_lock);pthread_cond_signal(&pool->not_empty_task);//通知包身工//printf("end call %s-----\n",__FUNCTION__);
}//任务回调函数
void taskRun(void *arg)
{PoolTask *task = (PoolTask*)arg;int num = task->tasknum;printf("task %d is runing %lu\n",num,pthread_self());sleep(1);printf("task %d is done %lu\n",num,pthread_self());
}int main()
{create_threadpool(3,20);int i = 0;for(i = 0;i < 50 ; i++){addtask(thrPool);//模拟添加任务}sleep(20);destroy_threadpool(thrPool);return 0;
}

2.UDP通信

TCP:传输控制协议, 面向连接的,稳定的,可靠的,安全的数据流传递

稳定和可靠: 丢包重传

数据有序: 序号和确认序号

流量控制: 滑动窗口 

UDP:用户数据报协议 

面向无连接的,不稳定,不可靠,不安全的数据报传递---更像是收发短信

UDP传输不需要建立连接,传输效率更高,在稳定的局域网内环境相对可靠

UDP通信相关函数介绍:

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,struct sockaddr *src_addr, socklen_t *addrlen);

函数说明: 接收消息

参数说明:

  • sockfd 套接字
  • buf  要接受的缓冲区
  • len  缓冲区的长度
  • flags 标志位 一般填0
  • src_addr 原地址 传出参数 
  • addrlen  发送方地址长度 
  • 返回值

成功: 返回读到的字节数 

失败: 返回 -1 设置errno

      调用该函数相当于TCP通信的recv+accept函数

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,const struct sockaddr *dest_addr, socklen_t addrlen);

函数说明: 发送数据

参数说明:

  • sockfd 套接字
  • dest_addr 目的地址
  • addrlen 目的地址长度
  • 返回值

成功: 返回写入的字节数

失败: 返回-1,设置errno

 

通过man 2 bind, 可以查看bind函数的相关信息, 后面还有示例代码, 可以参考.

本地套接字服务器的流程:

  • 可以使用TCP的方式, 必须按照tcp的流程 
  • 也可以使用UDP的方式, 必须按照udp的流程 

tcp的本地套接字服务器流程:

  • 创建套接字  socket(AF_UNIX,SOCK_STREAM,0)
  • 绑定 struct sockaddr_un &强转
  • 侦听 listen
  • 获得新连接 accept
  • 循环通信 read-write
  • 关闭文件描述符 close

tcp本地套接字客户端流程:

  • 调用socket创建套接字
  • 调用bind函数将socket文件描述和socket文件进行绑定.

不是必须的, 若无显示绑定会进行隐式绑定,但服务器不知道谁连接了.

  • 调用connect函数连接服务端
  • 循环通信read-write
  • 关闭文件描述符 close

编写代码并进行测试

编写udp代码并进行测试

测试:

多开器几个客户端经过测试表明:, udp天然支持多客户端, 这点和TCP不同, TCP需要维护连接.

//udp服务端
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <ctype.h>int main()
{//创建socketint cfd = socket(AF_INET, SOCK_DGRAM, 0);if(cfd<0){perror("socket error");return -1;}//绑定struct sockaddr_in serv;struct sockaddr_in client;bzero(&serv, sizeof(serv));serv.sin_family = AF_INET;serv.sin_port = htons(8888);serv.sin_addr.s_addr = htonl(INADDR_ANY);bind(cfd, (struct sockaddr *)&serv, sizeof(serv));int i;int n;socklen_t len;char buf[1024];while(1){//读取数据memset(buf, 0x00, sizeof(buf));len = sizeof(client);n = recvfrom(cfd, buf, sizeof(buf), 0, (struct sockaddr *)&client, &len);//将大写转换为小写for(i=0; i<n; i++){buf[i] = toupper(buf[i]);}printf("[%d]:n==[%d], buf==[%s]\n", ntohs(client.sin_port), n, buf);//发送数据sendto(cfd, buf, n, 0, (struct sockaddr *)&client, len);}//关闭套接字close(cfd);return 0;
}

使用nc命令进行测试: nc -u 127.1 8888

//udp客户端
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <ctype.h>int main()
{//创建socketint cfd = socket(AF_INET, SOCK_DGRAM, 0);if(cfd<0){perror("socket error");return -1;}int n;char buf[1024];struct sockaddr_in serv;serv.sin_family = AF_INET;serv.sin_port = htons(8888);inet_pton(AF_INET, "127.0.0.1", &serv.sin_addr.s_addr);while(1){//读标准输入数据memset(buf, 0x00, sizeof(buf));n = read(STDIN_FILENO, buf, sizeof(buf));//发送数据sendto(cfd, buf, n, 0, (struct sockaddr *)&serv, sizeof(serv));//读取数据memset(buf, 0x00, sizeof(buf));n = recvfrom(cfd, buf, sizeof(buf), 0, NULL, NULL);printf("n==[%d], buf==[%s]\n", n, buf);}//关闭套接字close(cfd);return 0;
}

3本地socket通信

回顾一些linux系统有哪些文件类型?

回顾一些linux系统下有哪些常见的IPC机制?

通过查询: man 7 unix 可以查到unix本地域socket通信相关信息:

#include <sys/socket.h>

#include <sys/un.h>

int socket(int domain, int type, int protocol);

函数说明: 创建本地域socket

函数参数:

domain: AF_UNIX or AF_LOCAL

type: SOCK_STREAM或者SOCK_DGRAM

protocol: 0 表示使用默认协议

函数返回值:

成功: 返回文件描述符.

失败: 返回-1, 并设置errno值.

创建socket成功以后, 会在内核创建缓冲区, 下图是客户端和服务端内核缓冲区示意图.

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函数说明: 绑定套接字

函数参数:

socket: 由socket函数返回的文件描述符

addr: 本地地址

addlen: 本地地址长度

函数返回值:

成功: 返回文件描述符.

失败: 返回-1, 并设置errno值.

需要注意的是: bind函数会自动创建socket文件, 若在调用bind函数之前socket文件已经存在, 则调用bind会报错, 可以使用unlink函数在bind之前先删除文件.

struct sockaddr_un {

    sa_family_t sun_family;  /* AF_UNIX or AF_LOCAL*/

    char sun_path[108];  /* pathname */

};

 

 

通过man 2 bind, 可以查看bind函数的相关信息, 后面还有示例代码, 可以参考.

本地套接字服务器的流程:

  • 可以使用TCP的方式, 必须按照tcp的流程 
  • 也可以使用UDP的方式, 必须按照udp的流程 

tcp的本地套接字服务器流程:

  • 创建套接字  socket(AF_UNIX,SOCK_STREAM,0)
  • 绑定 struct sockaddr_un &强转
  • 侦听 listen
  • 获得新连接 accept
  • 循环通信 read-write
  • 关闭文件描述符 close

tcp本地套接字客户端流程:

  • 调用socket创建套接字
  • 调用bind函数将socket文件描述和socket文件进行绑定.

不是必须的, 若无显示绑定会进行隐式绑定,但服务器不知道谁连接了.

  • 调用connect函数连接服务端
  • 循环通信read-write
  • 关闭文件描述符 close

编写代码并进行测试

测试客户端工具:

man  nc

-U      Specifies to use UNIX-domain sockets.

例如: nc -U sock.s

size = offsetof(struct sockaddr_un, sun_path) +strlen(un.sun_path);

#define offsetof(type, member) ((int)&((type *)0)->member)

//本地socket通信服务端
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/un.h>int main()
{//创建socketint lfd = socket(AF_UNIX, SOCK_STREAM, 0);if(lfd<0){perror("socket error");return -1;}//删除socket文件,避免bind失败unlink("./server.sock");//绑定bindstruct sockaddr_un serv;bzero(&serv, sizeof(serv));serv.sun_family = AF_UNIX;strcpy(serv.sun_path, "./server.sock"); int ret = bind(lfd, (struct sockaddr *)&serv, sizeof(serv));if(ret<0){perror("bind error");return -1;}//监听listenlisten(lfd, 10);//接收新的连接-acceptstruct sockaddr_un client;bzero(&client, sizeof(client));int len = sizeof(client);int cfd = accept(lfd, (struct sockaddr *)&client, &len);if(cfd<0){perror("accept error");	return -1;}printf("client->[%s]\n", client.sun_path);int n;char buf[1024];while(1){//读数据memset(buf, 0x00, sizeof(buf));		n = read(cfd, buf, sizeof(buf));if(n<=0){printf("read error or client close, n==[%d]\n", n);break;}printf("n==[%d], buf==[%s]\n", n, buf);//发送数据write(cfd, buf, n);}close(lfd);return 0;
}

//本地socket通信客户端
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/un.h>int main()
{//创建socketint cfd = socket(AF_UNIX, SOCK_STREAM, 0);if(cfd<0){perror("socket error");return -1;}//删除socket文件,避免bind失败unlink("./client.sock");//绑定bindstruct sockaddr_un client;bzero(&client, sizeof(client));client.sun_family = AF_UNIX;strcpy(client.sun_path, "./client.sock"); int ret = bind(cfd, (struct sockaddr *)&client, sizeof(client));if(ret<0){perror("bind error");return -1;}struct sockaddr_un serv;bzero(&serv, sizeof(serv));serv.sun_family = AF_UNIX;strcpy(serv.sun_path, "./server.sock");ret = connect(cfd, (struct sockaddr *)&serv, sizeof(serv));if(ret<0){perror("connect error");	return -1;}int n;char buf[1024];while(1){memset(buf, 0x00, sizeof(buf));n = read(STDIN_FILENO, buf, sizeof(buf));//发送数据write(cfd, buf, n);//读数据memset(buf, 0x00, sizeof(buf));		n = read(cfd, buf, sizeof(buf));if(n<=0){printf("read error or client close, n==[%d]\n", n);break;}printf("n==[%d], buf==[%s]\n", n, buf);}close(cfd);return 0;
}

测试客户端工具:

man  nc -U  Specifies to use UNIX-domain sockets.

例如: nc -U sock.s

size = offsetof(struct sockaddr_un, sun_path) +strlen(un.sun_path);

#define offsetof(type, member) ((int)&((type *)0)->member)

//线程池完整版本

#ifndef __THREADPOOL_H_
#define __THREADPOOL_H_typedef struct threadpool_t threadpool_t;/*** @function threadpool_create* @descCreates a threadpool_t object.* @param thr_num  thread num* @param max_thr_num  max thread size* @param queue_max_size   size of the queue.* @return a newly created thread pool or NULL*/
threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);/*** @function threadpool_add* @desc add a new task in the queue of a thread pool* @param pool     Thread pool to which add the task.* @param function Pointer to the function that will perform the task.* @param argument Argument to be passed to the function.* @return 0 if all goes well,else -1*/
int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg);/*** @function threadpool_destroy* @desc Stops and destroys a thread pool.* @param pool  Thread pool to destroy.* @return 0 if destory success else -1*/
int threadpool_destroy(threadpool_t *pool);/*** @desc get the thread num* @pool pool threadpool* @return # of the thread*/
int threadpool_all_threadnum(threadpool_t *pool);/*** desc get the busy thread num* @param pool threadpool* return # of the busy thread*/
int threadpool_busy_threadnum(threadpool_t *pool);#endif
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include "threadpool.h"#define DEFAULT_TIME 10                 /*10s检测一次*/
#define MIN_WAIT_TASK_NUM 10            /*如果queue_size > MIN_WAIT_TASK_NUM 添加新的线程到线程池*/ 
#define DEFAULT_THREAD_VARY 10          /*每次创建和销毁线程的个数*/
#define true 1
#define false 0typedef struct 
{void *(*function)(void *);          /* 函数指针,回调函数 */void *arg;                          /* 上面函数的参数 */
} threadpool_task_t;                    /* 各子线程任务结构体 *//* 描述线程池相关信息 */
struct threadpool_t 
{pthread_mutex_t lock;               /* 用于锁住本结构体 */    pthread_mutex_t thread_counter;     /* 记录忙状态线程个数de琐 -- busy_thr_num */pthread_cond_t queue_not_full;      /* 当任务队列满时,添加任务的线程阻塞,等待此条件变量 */pthread_cond_t queue_not_empty;     /* 任务队列里不为空时,通知等待任务的线程 */pthread_t *threads;                 /* 存放线程池中每个线程的tid。数组 */pthread_t adjust_tid;               /* 存管理线程tid */threadpool_task_t *task_queue;      /* 任务队列(数组首地址) */int min_thr_num;                    /* 线程池最小线程数 */int max_thr_num;                    /* 线程池最大线程数 */int live_thr_num;                   /* 当前存活线程个数 */int busy_thr_num;                   /* 忙状态线程个数 */int wait_exit_thr_num;              /* 要销毁的线程个数 */int queue_front;                    /* task_queue队头下标 */int queue_rear;                     /* task_queue队尾下标 */int queue_size;                     /* task_queue队中实际任务数 */int queue_max_size;                 /* task_queue队列可容纳任务数上限 */int shutdown;                       /* 标志位,线程池使用状态,true或false */
};void *threadpool_thread(void *threadpool);void *adjust_thread(void *threadpool);int is_thread_alive(pthread_t tid);
int threadpool_free(threadpool_t *pool);//threadpool_create(3,100,100);  
threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
{int i;threadpool_t *pool = NULL;do {if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {  printf("malloc threadpool fail");break;                                      /*跳出do while*/}pool->min_thr_num = min_thr_num;pool->max_thr_num = max_thr_num;pool->busy_thr_num = 0;pool->live_thr_num = min_thr_num;               /* 活着的线程数 初值=最小线程数 */pool->wait_exit_thr_num = 0;pool->queue_size = 0;                           /* 有0个产品 */pool->queue_max_size = queue_max_size;pool->queue_front = 0;pool->queue_rear = 0;pool->shutdown = false;                         /* 不关闭线程池 *//* 根据最大线程上限数, 给工作线程数组开辟空间, 并清零 */pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num); if (pool->threads == NULL) {printf("malloc threads fail");break;}memset(pool->threads, 0, sizeof(pthread_t)*max_thr_num);/* 队列开辟空间 */pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);if (pool->task_queue == NULL) {printf("malloc task_queue fail\n");break;}/* 初始化互斥琐、条件变量 */if (pthread_mutex_init(&(pool->lock), NULL) != 0|| pthread_mutex_init(&(pool->thread_counter), NULL) != 0|| pthread_cond_init(&(pool->queue_not_empty), NULL) != 0|| pthread_cond_init(&(pool->queue_not_full), NULL) != 0){printf("init the lock or cond fail\n");break;}//启动工作线程pthread_attr_t attr;pthread_attr_init(&attr);pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);for (i = 0; i < min_thr_num; i++) {pthread_create(&(pool->threads[i]), &attr, threadpool_thread, (void *)pool);/*pool指向当前线程池*/printf("start thread 0x%x...\n", (unsigned int)pool->threads[i]);}//创建管理者线程pthread_create(&(pool->adjust_tid), &attr, adjust_thread, (void *)pool);return pool;} while (0);/* 前面代码调用失败时,释放poll存储空间 */threadpool_free(pool);return NULL;
}/* 向线程池中 添加一个任务 */
//threadpool_add(thp, process, (void*)&num[i]);   /* 向线程池中添加任务 process: 小写---->大写*/int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg)
{pthread_mutex_lock(&(pool->lock));/* ==为真,队列已经满, 调wait阻塞 */while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown)) {pthread_cond_wait(&(pool->queue_not_full), &(pool->lock));}if (pool->shutdown) {pthread_cond_broadcast(&(pool->queue_not_empty));pthread_mutex_unlock(&(pool->lock));return 0;}/* 清空 工作线程 调用的回调函数 的参数arg */if (pool->task_queue[pool->queue_rear].arg != NULL) {pool->task_queue[pool->queue_rear].arg = NULL;}/*添加任务到任务队列里*/pool->task_queue[pool->queue_rear].function = function;pool->task_queue[pool->queue_rear].arg = arg;pool->queue_rear = (pool->queue_rear + 1) % pool->queue_max_size;       /* 队尾指针移动, 模拟环形 */pool->queue_size++;/*添加完任务后,队列不为空,唤醒线程池中 等待处理任务的线程*/pthread_cond_signal(&(pool->queue_not_empty));pthread_mutex_unlock(&(pool->lock));return 0;
}/* 线程池中各个工作线程 */
void *threadpool_thread(void *threadpool)
{threadpool_t *pool = (threadpool_t *)threadpool;threadpool_task_t task;while (true) {/* Lock must be taken to wait on conditional variable *//*刚创建出线程,等待任务队列里有任务,否则阻塞等待任务队列里有任务后再唤醒接收任务*/pthread_mutex_lock(&(pool->lock));/*queue_size == 0 说明没有任务,调 wait 阻塞在条件变量上, 若有任务,跳过该while*/while ((pool->queue_size == 0) && (!pool->shutdown)) {  printf("thread 0x%x is waiting\n", (unsigned int)pthread_self());pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));//暂停到这/*清除指定数目的空闲线程,如果要结束的线程个数大于0,结束线程*/if (pool->wait_exit_thr_num > 0) {pool->wait_exit_thr_num--;/*如果线程池里线程个数大于最小值时可以结束当前线程*/if (pool->live_thr_num > pool->min_thr_num) {printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());pool->live_thr_num--;pthread_mutex_unlock(&(pool->lock));//pthread_detach(pthread_self());pthread_exit(NULL);}}}/*如果指定了true,要关闭线程池里的每个线程,自行退出处理---销毁线程池*/if (pool->shutdown) {pthread_mutex_unlock(&(pool->lock));printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());//pthread_detach(pthread_self());pthread_exit(NULL);     /* 线程自行结束 */}/*从任务队列里获取任务, 是一个出队操作*/task.function = pool->task_queue[pool->queue_front].function;task.arg = pool->task_queue[pool->queue_front].arg;pool->queue_front = (pool->queue_front + 1) % pool->queue_max_size;       /* 出队,模拟环形队列 */pool->queue_size--;/*通知可以有新的任务添加进来*/pthread_cond_broadcast(&(pool->queue_not_full));/*任务取出后,立即将 线程池琐 释放*/pthread_mutex_unlock(&(pool->lock));/*执行任务*/ printf("thread 0x%x start working\n", (unsigned int)pthread_self());pthread_mutex_lock(&(pool->thread_counter));                            /*忙状态线程数变量琐*/pool->busy_thr_num++;                                                   /*忙状态线程数+1*/pthread_mutex_unlock(&(pool->thread_counter));(*(task.function))(task.arg);                                           /*执行回调函数任务*///task.function(task.arg);                                              /*执行回调函数任务*//*任务结束处理*/ printf("thread 0x%x end working\n", (unsigned int)pthread_self());pthread_mutex_lock(&(pool->thread_counter));pool->busy_thr_num--;                                       /*处理掉一个任务,忙状态数线程数-1*/pthread_mutex_unlock(&(pool->thread_counter));}pthread_exit(NULL);
}/* 管理线程 */
void *adjust_thread(void *threadpool)
{int i;threadpool_t *pool = (threadpool_t *)threadpool;while (!pool->shutdown) {sleep(DEFAULT_TIME);                                    /*定时 对线程池管理*/pthread_mutex_lock(&(pool->lock));int queue_size = pool->queue_size;                      /* 关注 任务数 */int live_thr_num = pool->live_thr_num;                  /* 存活 线程数 */pthread_mutex_unlock(&(pool->lock));pthread_mutex_lock(&(pool->thread_counter));int busy_thr_num = pool->busy_thr_num;                  /* 忙着的线程数 */pthread_mutex_unlock(&(pool->thread_counter));/* 创建新线程 算法: 任务数大于最小线程池个数, 且存活的线程数少于最大线程个数时 如:30>=10 && 40<100*/if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {pthread_mutex_lock(&(pool->lock));  int add = 0;/*一次增加 DEFAULT_THREAD 个线程*/for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY&& pool->live_thr_num < pool->max_thr_num; i++) {if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);add++;pool->live_thr_num++;}}pthread_mutex_unlock(&(pool->lock));}/* 销毁多余的空闲线程 算法:忙线程X2 小于 存活的线程数 且 存活的线程数 大于 最小线程数时*/if ((busy_thr_num * 2) < live_thr_num  &&  live_thr_num > pool->min_thr_num) {/* 一次销毁DEFAULT_THREAD个线程, 隨機10個即可 */pthread_mutex_lock(&(pool->lock));pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;      /* 要销毁的线程数 设置为10 */pthread_mutex_unlock(&(pool->lock));for (i = 0; i < DEFAULT_THREAD_VARY; i++) {/* 通知处在空闲状态的线程, 他们会自行终止*/pthread_cond_signal(&(pool->queue_not_empty));}}}return NULL;
}int threadpool_destroy(threadpool_t *pool)
{int i;if (pool == NULL) {return -1;}pool->shutdown = true;/*先销毁管理线程*///pthread_join(pool->adjust_tid, NULL);for (i = 0; i < pool->live_thr_num; i++) {/*通知所有的空闲线程*/pthread_cond_broadcast(&(pool->queue_not_empty));}/*for (i = 0; i < pool->live_thr_num; i++) {pthread_join(pool->threads[i], NULL);}*/threadpool_free(pool);return 0;
}int threadpool_free(threadpool_t *pool)
{if (pool == NULL) {return -1;}if (pool->task_queue) {free(pool->task_queue);}if (pool->threads) {free(pool->threads);pthread_mutex_lock(&(pool->lock));pthread_mutex_destroy(&(pool->lock));pthread_mutex_lock(&(pool->thread_counter));pthread_mutex_destroy(&(pool->thread_counter));pthread_cond_destroy(&(pool->queue_not_empty));pthread_cond_destroy(&(pool->queue_not_full));}free(pool);pool = NULL;return 0;
}int threadpool_all_threadnum(threadpool_t *pool)
{int all_threadnum = -1;pthread_mutex_lock(&(pool->lock));all_threadnum = pool->live_thr_num;pthread_mutex_unlock(&(pool->lock));return all_threadnum;
}int threadpool_busy_threadnum(threadpool_t *pool)
{int busy_threadnum = -1;pthread_mutex_lock(&(pool->thread_counter));busy_threadnum = pool->busy_thr_num;pthread_mutex_unlock(&(pool->thread_counter));return busy_threadnum;
}int is_thread_alive(pthread_t tid)
{int kill_rc = pthread_kill(tid, 0);     //发0号信号,测试线程是否存活if (kill_rc == ESRCH) {return false;}return true;
}/*测试*/ #if 1
/* 线程池中的线程,模拟处理业务 */
void *process(void *arg)
{printf("thread 0x%x working on task %d\n ",(unsigned int)pthread_self(),*(int *)arg);sleep(1);printf("task %d is end\n", *(int *)arg);return NULL;
}int main(void)
{/*threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);*/threadpool_t *thp = threadpool_create(3,100,100);   /*创建线程池,池里最小3个线程,最大100,队列最大100*/printf("pool inited");//int *num = (int *)malloc(sizeof(int)*20);int num[20], i;for (i = 0; i < 20; i++) {num[i]=i;printf("add task %d\n",i);threadpool_add(thp, process, (void*)&num[i]);   /* 向线程池中添加任务 */}sleep(10);                                          /* 等子线程完成任务 */threadpool_destroy(thp);return 0;
}#endif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FreeRTOS源码分析-10 互斥信号量

目录 1 事件标志组概念及其应用 1.1 事件标志组定义 1.2 FreeRTOS事件标志组介绍 1.3 FreeRTOS事件标志组工作原理 2 事件标志组应用 2.1 功能需求 2.2 API 2.3 功能实现 3 事件标志组原理 3.1 事件标志组控制块 3.2 事件标志组获取标志位 3.3 等待事件标志触发 3.4…

小程序的api使用 以及一些weui组件实列获取头像 扫码等

今日目标 响应式单位rpx小程序的生命周期 【重点】20%小程序框架 weui 【重点】 50%内置API 【重点】30%综合练习 1. 响应式rpx 1.1 rpx单位 rpx是微信小程序提出的一个尺寸单位&#xff0c;将整个手机屏幕宽度分为750份&#xff0c;1rpx 就是 1/750&#xff0c;避免不同手…

QT自带PDF库的使用

QT自带PDF库可以方便的打开PDF文件&#xff0c;并将文件解析为QImage&#xff0c;相比网上提供的开源库&#xff0c;QT自带PDF库使用更方便&#xff0c;也更加可靠&#xff0c;然而&#xff0c;QT自带PDF库的使用却不同于其他通用库的使用&#xff0c;具备一定的技巧。 1. 安装…

以太网DHCP协议(十)

目录 一、工作原理 二、DHCP报文 2.1 DHCP报文类型 2.2 DHCP报文格式 当网络内部的主机设备数量过多是&#xff0c;IP地址的手动设置是一件非常繁琐的事情。为了实现自动设置IP地址、统一管理IP地址分配&#xff0c;TCPIP协议栈中引入了DHCP协议。 一、工作原理 使用DHCP之…

通向架构师的道路之weblogic与apache的整合与调优

一、BEAWeblogic的历史 BEA WebLogic是用于开发、集成、部署和管理大型分布式Web应用、 网络应用和数据库应 用的Java应用服务器。将Java的动态功能和Java Enterprise标准的安全性引入大型网络应用的 开发、集成、部署和管理之中。 BEA WebLogic Server拥有处理关键Web应…

pytorch求导

pytorch求导的初步认识 requires_grad tensor(data, dtypeNone, deviceNone, requires_gradFalse)requires_grad是torch.tensor类的一个属性。如果设置为True&#xff0c;它会告诉PyTorch跟踪对该张量的操作&#xff0c;允许在反向传播期间计算梯度。 x.requires_grad 判…

TM4C123库函数学习(1)--- 点亮LED+TM4C123的ROM函数简介+keil开发环境搭建

前言 &#xff08;1&#xff09; 首先&#xff0c;我们需要知道TM4C123是M4的内核。对于绝大多数人而言&#xff0c;入门都是学习STM32F103&#xff0c;这款芯片是采用的M3的内核。所以想必各位对M3内核还是有一定的了解。M4内核就是M3内核的升级版本&#xff0c;他继承了M3的的…

【力扣每日一题】2023.8.5 合并两个有序链表

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们两个有序的链表&#xff0c;要我们保持升序的状态合并它们。 我们可以马上想要把两个链表都遍历一遍&#xff0c;把所有节点的…

1-搭建一个最简单的验证平台UVM,已用Questasim实现波形!

UVM-搭建一个最简单的验证平台&#xff0c;已用Questasim实现波形 1&#xff0c;背景知识2&#xff0c;".sv"文件搭建的UVM验证平台&#xff0c;包括代码块分享3&#xff0c;Questasim仿真输出&#xff08;1&#xff09;compile all&#xff0c;成功&#xff01;&…

【力扣每日一题】2023.8.8 任意子数组和的绝对值的最大值

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个数组&#xff0c;让我们找出它的绝对值最大的子数组的和。 这边的子数组是要求连续的&#xff0c;让我们找出一个元素之和…

GG修改器安装与Root环境的安装

关于GG修改器大家应该都有一定的了解吧&#xff0c;就是类似于电脑端CE的一个软件。 GG修改器在百度云盘里请自行下载&#xff01; 百度网盘链接&#xff1a;https://pan.baidu.com/s/1p3KJRg9oq4s0XzRuEIBH4Q 提取码&#xff1a;vuwj 那我要开始了&#xff01; 本来不想讲GG…

Spring Boot集成EasyPoi实现导入导出操作

文章目录 Spring Boot集成EasyPoi实现导入导出操作0 简要说明1 环境搭建1.1 项目目录1.2 依赖管理2.3 关于swagger处理2.4 关于切面处理耗时1 自定义注解2 定义切面类3 如何使用 2.5 核心导入操作2.6 核心导出操作 2 最佳实线2.1 导入操作1 实体类说明2 业务层3 效果3 控制层 2…

常用抓包工具

Fiddler Fiddler 是一个很好用的抓包工具&#xff0c;可以用于抓取http/https的数据包&#xff0c;常用于Windows系统的抓包&#xff0c;它有个优势就是免费 Charles Charles是由JAVA开发的&#xff0c;可以运行在window Linux MacOS&#xff0c;但它是收费的&#xff0c;和…

httpd+Tomcat(jk)的Web动静分离搭建

动静分离是指将动态请求和静态请求分别交给不同的服务器来处理&#xff0c;可以提高服务器的效率和性能。在Java Web开发中&#xff0c;常见的动态请求处理方式是通过Tomcat来处理&#xff0c;而静态请求则可以通过Apache服务器来处理。本文将详细讲解如何结合Apache和Tomcat来…

面试热题(翻转k个链表)

给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改变节点内部的值&a…

ctfshow-web7

0x00 前言 CTF 加解密合集 CTF Web合集 0x01 题目 0x02 Write Up 通过尝试&#xff0c;发现是数字型的注入&#xff0c;并且同样是过滤了空格 判断字段 获取一下flag即可 1/**/union/**/select/**/1,flag,3/**/from/**/web7.flag#&passworda以上

Spring接口ApplicationRunner的作用和使用介绍

在Spring框架中&#xff0c;ApplicationRunner接口是org.springframework.boot.ApplicationRunner接口的一部分。它是Spring Boot中用于在Spring应用程序启动完成后执行特定任务的接口。ApplicationRunner的作用是在Spring应用程序完全启动后&#xff0c;执行一些初始化任务或处…

【框架篇】MyBatis 介绍及使用(详细教程)

一&#xff0c;MyBatis 介绍 MyBatis 是一款优秀的持久层框架&#xff0c;它支持自定义 SQL、存储过程以及高级映射。MyBatis 免除了几乎所有的 JDBC 代码以及设置参数和获取结果集的工作。MyBatis 可以通过简单的 XML 或注解来配置和映射原始类型、接口和 Java POJO&#xff…

Oracle以逗号分隔的字符串拆分为多行数据实例详解

前言 近期在工作中遇到某表某字段是可扩展数据内容&#xff0c;信息以逗号分隔生成的&#xff0c;现需求要根据此字段数据在其它表查询相关的内容展现出来&#xff0c;第一想法是切割数据&#xff0c;以逗号作为切割符&#xff0c;以下为总结的实现方法&#xff0c;以供大家参…

微服务 云原生:基于 Gogs + Drone 进行项目 CI/CD

传统构建部署 以一个简单的前后端项目来说&#xff0c;分别编写前后端的 Dockerfile 文件并构建镜像&#xff0c;然后编写 docker-compose.yml 构建部署&#xff0c;启动运行。 一个简单的例子&#xff1a; 前端&#xff1a; 项目名&#xff1a;kubemanagement-web技术栈&am…