⚡【C语言趣味教程】(3) 浮点类型:单精度浮点数 | 双精度浮点型 | IEEE754 标准 | 介绍雷神之锤 III 源码中的平方根倒数速算法 | 浮点数类型的表达方式

  🔗 《C语言趣味教程》👈 猛戳订阅!!!

—— 热门专栏《维生素C语言》的重制版 ——

  • 💭 写在前面:这是一套 C 语言趣味教学专栏,目前正在火热连载中,欢迎猛戳订阅!本专栏保证篇篇精品,继续保持本人一贯的幽默式写作风格,当然,在有趣的同时也同样会保证文章的质量,旨在能够产出 "有趣的干货" !本系列教程不管是零基础还是有基础的读者都可以阅读,可以先看看目录! 标题前带星号 (*) 的部分不建议初学者阅读,因为内容难免会超出当前章节的知识点,面向的是对 C 语言有一定基础或已经学过一遍的读者,初学者可自行选择跳过带星号的标题内容,等到后期再回过头来学习。值得一提的是,本专栏 强烈建议使用网页端阅读! 享受极度舒适的排版!你也可以展开目录,看看有没有你感兴趣的部分!希望需要学 C 语言的朋友可以耐下心来读一读。最后,可以订阅一下专栏防止找不到。

" 有趣的写作风格,还有特制的表情包,而且还干货满满!太下饭了!"

—— 沃兹基硕德

📜 本章目录:

Ⅰ. 浮点类型(Float Point)

0x00 引入:什么是浮点数?

0x01 单精度浮点型:float

0x02 双精度浮点型:double

0x03 浮点数 “精度丢失” 问题

0x04 浮点数类型的表达方式

* 0x05 复数浮点型:complex_float / complex double

Ⅱ. 二进制浮点数算术标准(IEEE754)

0x00 引入:浮点数的存储

0x01 IEEE754 规定

0x02 阅读:雷神之锤 III 源码中的 "平方根倒数速算法"

Ⅲ. 浮点数类型的表达方式(Float Expression)

0x00 引入:浮点数类型的表示

0x01 十进制小数型:x.

0x02 指数型:xEn


Ⅰ. 浮点类型(Float Point)

0x00 引入:什么是浮点数?

在讲解浮点类型前,我们不妨先先来了解一下什么是浮点数,浮点 (float point):

顾名思义就是 "一个漂浮的点",其英文 float 也是这个含义(浮动, 漂浮之意)。

因此,浮点数指的是一个数的小数点的位置不是固定的,而是可以浮动的。

浮点数在数学中的定义:浮点数是属于有理数中某个特定子集的数的数字表示。

C 语言的浮点型是用来存放小数类型的数字的,可分为 单精度 和 双精度,我们稍后会作讲解。

" 程序员不得不知道的标准,IEEE754 标准! "

电气电子工程师学会 (IEEE) 颁布过一个浮点数标准,全称 IEEE 二进制浮点算数标准。

简称 IEEE754,是被绝大部分 CPU 和浮点运算器所采用的一套浮点数标准。

0x01 单精度浮点型:float

我们可以用 float 类型来表示小数,称为 单精度浮点型 (single floating-point) 。

float 变量名 = 值;

float 的精度为 6~7 位小数,float 类型占 4 个字节。

我们来使用 float 定义一些变量:

float height = 170.00;
float weight = 50.5;
float pi = 3.14;
float zero = 0.0;

我们可以使用 float 专属的格式化字符 %f 来打印浮点类型变量。

💬 代码演示:打印浮点数

#include <stdio.h>int main(void)
{float pi = 3.14;printf("%f", pi);return 0;
}

🚩 运行结果:3.140000

此时我们发现结果为 3.140000,而不是 3.14,因为把精度全部都打出来了。

我们可以用 %.Xf 来控制保留小数点位数,其中 X 是几就保留几位。

这里我们想保留两位,所以 %.2f 即可:

#include <stdio.h>int main(void)
{float pi = 3.14;printf("%.2f", pi);return 0;
}

🚩 运行结果:3.14

0x02 双精度浮点型:double

刚才介绍了单精度浮点型 float,表示的数需要的精度较低,就可以用 float 来定义。

如果表示的数要求的精度较高,我们就可以使用 double 类型来定义。

double双精度浮点型 (double floating-point),double 类型的精度比 float 类型要高得多。

double 变量名 = 值;

double 类型的精度为 15~16 位小数,相应的占的字节数也更多,double 类型占 8 个字节。

我们可以使用 double 专属的格式化字符 %lf 来打印 double 类型的变量:

#include <stdio.h>int main(void)
{double pi = 3.141592;printf("%lf\n", pi);return 0;
}

🚩 运行结果:3.141592

0x03 浮点数 “精度丢失” 问题

浮点数精度丢失是指在使用浮点数进行数值计算时,由于浮点数的二进制表示方式的特殊性,导致某些精确的数值无法准确表示,从而引起计算结果的误差。

浮点数在计算机中使用二进制表示,通常采用IEEE 754标准来表示单精度浮点数(32位)和双精度浮点数(64位)。无论是单精度还是双精度浮点数,都有固定的位数来表示整数部分和小数部分,这就导致了有些十进制数无法用有限的二进制位数准确表示。

例如,考虑一个简单的示例,计算 0.1 + 0.2。在十进制中,这个结果是 0.3,但是在浮点数表示中,由于 0.1 和 0.2 的二进制表示是无限循环的,所以它们的精确表示会受到限制。因此,计算机在进行浮点数计算时可能得到一个近似的结果,比如 0.30000000000000004。

浮点数精度丢失问题还可能在连续的计算中累积误差,导致最终结果的精度下降。这是由于浮点数的表示范围是有限的,无法表示所有的实数,因此在计算过程中可能会出现舍入误差和截断误差。

* 0x05 复数浮点型:complex_float / complex double

C99 标准新增了复数类型 _Complex 和虚部类型 _lmaginary

定义复数浮点型前需引入头文件 complex.h,定义格式如下:

#include <complex.h>float complex a = 3.0 + 4.0 * I;
double complex b = 4.0 - 5.0 * I;

其中 I 表示虚数单位,complex 可以根据我们需要的精度定义。

C 语言不仅支持复数浮点型的加减乘除操作,还支持求模、求共轭等操作。

💬 代码演示:完成一些复数操作

#include <stdio.h>
#include <complex.h>int main(void) 
{// 定义两个复数double complex num1 = 2.5 + 3.7 * I;double complex num2 = 1.8 - 2.3 * I;// 加法double complex sum = num1 + num2;printf("%.2f + %.2fi\n", creal(sum), cimag(sum));// 减法double complex diff = num1 - num2;printf("%.2f + %.2fi\n", creal(diff), cimag(diff));// 乘法double complex product = num1 * num2;printf("%.2f + %.2fi\n", creal(product), cimag(product));// 除法double complex quotient = num1 / num2;printf("%.2f + %.2fi\n", creal(quotient), cimag(quotient));// 求模double modulus = cabs(num1);printf("%.2f\n", modulus);// 求共轭double complex conjugate = conj(num1);printf("%.2f + %.2fi\n", creal(conjugate), cimag(conjugate));return 0;
}

🚩 运行结果如下:

4.30 + 1.40i
0.70 + 6.00i
13.01 + 0.91i
-0.47 + 1.45i
4.47
2.50 + -3.70i

Ⅱ. 二进制浮点数算术标准(IEEE754)

0x00 引入:浮点数的存储

在讲解之前我们先来试着观察下列程序的输出结果:

int main(void)
{int n = 9;float* pFloat = (float*)&n;printf("n的值为: %d\n", n);printf("*pFloat的值为 %f\n", *pFloat);*pFloat = 9.0;printf("num的值为: %d\n", n);printf("*pFloat的值为: %f\n", *pFloat);return 0;
}

🚩 运行结果如下:

❓ 思考:num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的结果会差这么大?

由此可以看出,浮点数和整数在内存中的存储方式一定是有区别的。

那么具体是什么样的区别?着我们就不得不去介绍开篇提到的 IEEE754 规定了。

0x01 IEEE754 规定

IEEE754 规定,任意一个二进制浮点数 \color{}V 可以表示成以下形式:

\color{}(-1)^S * M * 2^E

  • 其中, \color{}(-1)^s 表示符号位,当 \color{}s=0 时 \color{}V 为正数,当 \color{}s=1 时 \color{}V 为负数
  • \color{}M 表示有效数字,\color{}1\leq M< 2
  • \color{}2^E 表示指数位

💭 举个例子:浮点数 5.5

转换为二进制:

\color{}101.1\rightarrow 1.011 * 2^2\rightarrow (-1)^0*1.011*2^2

\color{}s=0,\, \, M=1.011,\, \, E=2

🔺 IEEE 754 规定:

对于 32 位浮点数,最高的 1 位是符号位 \color{}S,接着 8 位是指数 \color{}E,剩下的 23 位是有效数字 \color{}M

对于 64 位浮点数,最高的 1 位是符号位 \color{}S,接着 11 位是指数 \color{}E,剩下的 52 位是有效数字 \color{}M

IEEE 754 对有效数字M和指数E,还有一些特别规定!

前面说过, 1\leq M<2,也就是说,M 可以写成 1.xxxxxx 的形 式,其中 xxxxxx 表示小数部分。IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1,因此可以被舍去,只保存后面的 xxxxxx 部分。 比如保存 1.01 的时候,只保存 01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以 32 位浮点数为例,留给 M 只有 23 位,将第一位的 1 舍去以后,等于可以保存 24 位有效数字。

至于指数 E,情况就比较复杂。 首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的 取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真 实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E 是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前 加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位, 则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其二进制表示形式为

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为 0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

此时,再看前面的例子,问题就很好理解了: 

🔺 浮点数在内存中的分布:符号位 + 指数位 + 尾部部分

0x02 阅读:雷神之锤 III 源码中的 "平方根倒数速算法"

" evil floating point bit level hacking, what the fuck? "

—— Quake III

  (雷神之锤 III 游戏截图)

雷神之锤III 是由 id Software 采用 id Tech3 引擎制作的多人连线 FPS 游戏,1999年12月发行。玩家或独立或组队在地图中厮杀,死亡后数秒即在地图某处重生。当某位或某队玩家达到胜利条件或者游戏持续一定时间后即宣告一个回合结束。胜利条件取决于选择的游戏模式。

雷神之锤 III 的源码中有一段震惊四座的代码:

float Q_rsqrt( float number )
{long i;float x2, y;const float threehalfs = 1.5f;x2 = number * 0.5f;y  = number;i  = * ( long * ) &y;  // evil floating point bit level hackingi  = 0x5f3759df - ( i >> 1 ); // what the fuck?y  = * ( float * ) &i;y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration// y  = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removedreturn y;
}

这是一个快速逆平方根的算法,求一个数的平方根的倒数。

\color{}f(x)=\frac{1}{\sqrt{x}}

常规的方法是调用 math 库里的 sqrt 求一个数的平方根,求平方根的倒数只需要:

float y = 1 / sqrt(x);

而作者实现的算法要比这种常规方法快得多,在计算浮点数的平方根倒数的同一精度的近似值时,此算法比直接使用浮点数除法要快四倍。其中还有一串神秘数字:0x5f3759df,更是给这段代码留下了最具神秘、浓墨重彩的一笔。还对它进行了位移,机器码位移,WTF?

该算法被称为 平方根倒数速算法 (Fast Inverse Square Root),对代码原理感兴趣的读者可以阅读下面这篇 wiki,有对该算法详细的讲解。

🔗 链接:Fast inverse square root

 Fast Inverse Square Root 的历史

Quake III Arena 是一款第一人称射击游戏,由id Software于 1999 年发布,并使用了该算法。Brian Hook 可能将 3dfx 的算法引入了 id Software。2000 年中国开发者论坛 CSDN 上出现了对该代码的讨论, 以及2002 年和 2003 年Usenet和 gamedev.net 论坛广泛传播了该代码。人们猜测谁编写了该算法和常数是如何导出的,有人猜测是约翰·卡马克。Quake III的完整源代码在QuakeCon 2005上发布,但没有提供答案。作者身份问题已于 2006 年得到解答。2007 年,该算法在一些使用现场可编程门阵列(FPGA)的专用硬件顶点着色器中实现。

Ⅲ. 浮点数类型的表达方式(Float Expression)

0x00 引入:浮点数类型的表示

符合 C 标准法的浮点数有两种表达形式,分别是 十进制小数型 和 指数型

0x01 十进制小数型:x.

十进制小数型:由数字和小数点组成:x.

💭 举个例子:下面这三种方式都是合法的:

123.     ✅
1.23     ✅
.123     ✅

小数点前后的数是可以省略的,小数点不可省略,省略了就不是浮点数了。

💬 代码演示:

#include <stdio.h>int main(void)
{float a = 1.0;printf("%f\n", a);float b = 1.;printf("%f\n", b);float c = .1;printf("%f\n", c);return 0;
}

🚩 运行结果如下:

0x02 指数型:xEn

指数型:由字母 E 和数字组成(这里 e 也可以是小写):

\color{}xEn,\, \, \, \, \, \, \, \, \, \, \, \, x\in \mathbb{\mathbb{Z}},n\in \left \langle \textrm{float} \right \rangle

其中 x 必须是一个十进制小数型,和上面的规则一样,点的位置都是合法的。

n 必须是整型常量,且不能是表达式,并且 x 和 n 都不能省略。

💭 举个例子:只有前面 4 个是合法的

1.23e5         ✅ 
12345e6        ✅
3.14E7         ✅
.2e3           ✅
.e3            ❌ e 前面没有数
e3             ❌ e 前面没有数
3.14e          ❌ e 后面没有数
3.e6.2         ❌ e 后面必须是整数
5.0e(1+4)      ❌ 不能为表达式

指数型的表达方式非常苛刻,这里有一个口诀方便大家记忆:

" E 前 E 后必有数,E 后必定为整数。"

💬 代码演示:

#include <stdio.h>int main(void)
{float a = .23e4;printf("%f\n", a);float b = 1234e6;printf("%f\n", b);float c = 3.14E7;printf("%f\n", c);return 0;
}

🚩 运行结果如下:

📌 [ 笔者 ]   王亦优 | 雷向明
📃 [ 更新 ]   2023.7.17 | 2023.7.20(recently)
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考文献:

- C++reference[EB/OL]. []. http://www.cplusplus.com/reference/.

- Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

- 百度百科[EB/OL]. []. https://baike.baidu.com/.

- 维基百科[EB/OL]. []. https://zh.wikipedia.org/wiki/Wikipedia

- R. Neapolitan, Foundations of Algorithms (5th ed.), Jones & Bartlett, 2015.

- B. 比特科技. C/C++[EB/OL]. 2021[2021.8.31]

- 林锐博士. 《高质量C/C++编程指南》[M]. 1.0. 电子工业, 2001.7.24.

- 陈正冲. 《C语言深度解剖》[M]. 第三版. 北京航空航天大学出版社, 2019.

- 侯捷. 《STL源码剖析》[M]. 华中科技大学出版社, 2002.

- T. Cormen《算法导论》(第三版),麻省理工学院出版社,2009年。

- T. Roughgarden, Algorithms Illuminated, Part 1~3, Soundlikeyourself Publishing, 2018.

- J. Kleinberg&E. Tardos, Algorithm Design, Addison Wesley, 2005.

- R. Sedgewick&K. Wayne,《算法》(第四版),Addison-Wesley,2011

- S. Dasgupta,《算法》,McGraw-Hill教育出版社,2006。

- S. Baase&A. Van Gelder, Computer Algorithms: 设计与分析简介》,Addison Wesley,2000。

- E. Horowitz,《C语言中的数据结构基础》,计算机科学出版社,1993

- S. Skiena, The Algorithm Design Manual (2nd ed.), Springer, 2008.

- A. Aho, J. Hopcroft, and J. Ullman, Design and Analysis of Algorithms, Addison-Wesley, 1974.

- M. Weiss, Data Structure and Algorithm Analysis in C (2nd ed.), Pearson, 1997.

- A. Levitin, Introduction to the Design and Analysis of Algorithms, Addison Wesley, 2003. - A. Aho, J. 

- E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms/C++, Computer Science Press, 1997.

- R. Sedgewick, Algorithms in C: 第1-4部分(第三版),Addison-Wesley,1998

- R. Sedgewick,《C语言中的算法》。第5部分(第3版),Addison-Wesley,2002

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/2685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文件IO_文件截断_ftruncate,truncate(附Linux-5.15.10内核源码分析)

目录 1.为什么需要文件截断&#xff1f; 2.truncate函数介绍 2.1 truncate函数 2.2 truncate函数内核源码分析 2.3 truncate函数使用示例 3.ftruncate函数介绍 3.1 ftruncate函数 3.2 ftruncate函数内核源码分析 3.3 ftruncate函数使用示例 3.4 ftruncate和文件偏移量…

进程间通信之共享内存

共享内存 1.共享内存的概念2.共享内存函数2.1 shmget函数2.2 shmat函数2.3 shmdt函数2.4 shmctl函数 3. 共享内存的使用 1.进程间通信的分类&#xff1a; &#xff08;1&#xff09;管道&#xff1a;1、匿名管道pipe;2、命名管道mkfifo &#xff08;2&#xff09;System V IPC&…

【算法基础:数据结构】2.2 字典树/前缀树 Trie

文章目录 知识点cpp结构体模板 模板例题835. Trie字符串统计❤️❤️❤️❤️❤️&#xff08;重要&#xff01;模板&#xff01;&#xff09;143. 最大异或对&#x1f62d;&#x1f62d;&#x1f62d;&#x1f62d;&#x1f62d;&#xff08;Trie树的应用&#xff09; 相关题目…

C# MVC 多图片上传预览

一.效果图&#xff1a; 开发框架&#xff1a;MVC&#xff0c;Layui 列表主界面这里就不展示了&#xff0c;可以去看看这篇文章&#xff1a;Layui项目实战&#xff0c;这里讲的是“上传Banner”界面功能&#xff1a; 其中包括&#xff0c;多文件上传&#xff0c;预览&#xff0c…

vue进阶-消息的订阅与发布

&#x1f4d6;vue基础学习-组件 介绍了嵌套组件间父子组件通过 props 属性进行传参。子组件传递数据给父组件通过 $emit() 返回自定义事件&#xff0c;父组件调用自定义事件接收子组件返回参数。 &#x1f4d6;vue进阶-vue-route 介绍了路由组件传参&#xff0c;两种方式&…

【conan】本地编译三方库,上传conan服务器

1.6 conan 远程已经编译好的库 conan中文博客&#xff1a; 三方库资源&#xff1a; github conan-io 本地查询 conan search Existing package recipes:b2/4.9.6 boost/1.71.0nolovr/stable bzip2/1.0.8 ceres-solver/2.0.0nolovr/stable eigen/3.3.7nolovr/stable eigen_c…

【软件测试】selenium中元素的定位

1.元素的定位 不管用那种方式&#xff0c;必须保证页面上该属性的唯一性 1.CSS 定位 CSS(Cascading Style Sheets)是一种语言&#xff0c;它被用来描述HTML 和XML 文档的表现。 CSS 使用选择器来为页面元素绑定属性。这些选择器可以被selenium 用作另外的定位策略CSS的获取可…

C++基础算法前缀和和差分篇

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;C算法 &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 主要讲解了前缀和和差分算法 文章目录 Ⅳ. 前缀和 和 差分Ⅵ .Ⅰ前缀和…

echarts_柱状图+漏斗图

目录 柱状图(bar)需求[1] 复制案例[2] 修改类目轴方向[3] 修改数据渲染方向[4] 修改坐标轴文本样式 漏斗图(funnel)漏斗图的形状 柱状图(bar) 需求 如上图&#xff0c;做一个横向柱状图&#xff0c;后端返回的数据是从小向大排列的数据&#xff0c;希望能够按照顺序进行展示。…

【Docker】详解docker安装及使用

详解docker安装及使用 1. 安装docker1.1 查看docker版本信息 2. Docker镜像操作3. Docker容器操作4.知识点总结4.1 docker镜像操作4.2 docker容器操作4.3 docker run启动过程 参见docker基础知识点详解 1. 安装docker 目前Docker只能支持64位系统。 ###关闭和禁止防火墙开机自…

pytorch+CRNN实现

最近接触了一个仪表盘识别的项目&#xff0c;简单调研以后发现可以用CRNN来做。但是手边缺少仪表盘数据集&#xff0c;就先用ICDAR2013试了一下。 结果遇到了一系列坑。为了不使读者和自己在以后的日子继续遭罪。我把正确的代码发到下面了。 1&#xff09;超参数请不要调整&am…

Android oom_adj 详细解读

源码基于&#xff1a;Android R 0. 前言 在博文《oom_adj 内存水位算法剖析》一文中详细的分析了lmkd 中针对 oom_adj 内存水位的计算、使用方法&#xff0c;在博文《oom_adj 更新原理(1)》、《oom_adj 更新原理(2)》中对Android 系统中 oom_adj 的更新原理进行了详细的剖析。…

Centos 7 安装 Oracle 11G

Oracle 11G 安装教程 准备环境 p13390677_112040_Linux-x86-64_1of7.zipp13390677_112040_Linux-x86-64_2of7.zipCentos 7- rhel7-英文版的系统–不想换语言的执行(LANGen_US)– 传输 文件到服务器上 创建用户和组 [rootlocalhost ~]# groupadd oracle [rootlocalhost ~]…

Windows11 C盘瘦身

1.符号链接 将大文件夹移动到其他盘&#xff0c;创建成符号链接 2.修改Android Studio路径设置 1.SDK路径 2.Gradle路径 3.模拟器路径 设置环境变量 ANDROID_SDK_HOME

基于单片机的盲人导航智能拐杖老人防丢防摔倒发短息定位

功能介绍 以STM32单片机作为主控系统&#xff1b; OLED液晶当前实时距离&#xff0c;安全距离&#xff0c;当前经纬度信息&#xff1b;超声波检测小于设置的安全距离&#xff0c;蜂鸣器报警提示&#xff1a;低于安全距离&#xff01;超声波检测当前障碍物距离&#xff0c;GPS进…

python发送邮件yagmail库

yagmail库发送邮件简洁&#xff0c;代码量少 import yagmaildef send_yagmail(sender, send_password, addressee, hostsmtp.qq.com, port465):yag yagmail.SMTP(sender, send_password, host, port)img_url https://img2.baidu.com/it/u483398814,2966849709&fm253&…

基于单片机的智能空调系统的设计与实现

功能介绍 以51单片机作为主控系统&#xff1b;LCD1602液晶显示当前水温&#xff0c;定时提醒&#xff0c;水量变化DS18B20检测当前水体温度&#xff1b;水位传感器检测当前水位&#xff1b;继电器驱动加热片进行水温加热&#xff1b;定时提醒喝水&#xff0c;蜂鸣器报警&#x…

LeetCode面试题02.07.链表相交

面试题02.07.链表相交 两种解题思路 面试题02.07.链表相交一、双指针二、哈希集合 一、双指针 这道题简单来说&#xff0c;就是求两个链表交点节点的指针 这里注意&#xff1a;交点不是数值相等&#xff0c;而是指针相等 为了方便举例&#xff0c;假设节点元素数值相等&…

用Python采用Modbus-Tcp的方式读取485电子水尺数据

README.TXT 2023/6/15 V1.0 实现了单个点位数据通信、数据解析、数据存储 2023/6/17 V2.0 实现了多个点位数据通信、数据解析、数据存储 2023/6/19 V2.1 完善log存储&#xff0c;仅保留近3天的log记录&#xff0c;避免不必要的存储&#xff1b;限制log大小&#xff0c;2MB。架…

数字原生时代,奥哲如何让企业都成为“原住民”?

22年前&#xff0c;美国教育学家马克‧普伦斯基&#xff08;Marc Prensky&#xff09;出版了《数字原生与数字移民》&#xff08;Digital Natives, Digital Immigrants&#xff09;一书&#xff0c;首次提出了“数字原住民”和“数字移民”两大概念&#xff0c;用来定义跨时代的…