题目:
链接:LCR 095. 最长公共子序列;LeetCode 1143. 最长公共子序列
难度:中等
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
- 1 <= text1.length, text2.length <= 1000
- text1 和 text2 仅由小写英文字符组成。
动态规划:
经典的模板题,套状态转移方程。
dp[i][j] 的含义是:对于 s1[1…i] 和 s2[1…j],它们的 LCS 长度是 dp[i][j]。
代码:
class Solution {
public:int longestCommonSubsequence(string text1, string text2) {int n = text1.size(), m = text2.size();vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){if(text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[n][m];}
};
时间复杂度O(NM)。
空间复杂度O(NM)。N、M分别是两个字符串的长度。