目录
- 数字图像处理所有的基本数字工具介绍
- 算术运算
- 集合运算和逻辑运算
- 空间运算
- 向量与矩阵运算
- 图像变换
- 图像和随机变量
数字图像处理所有的基本数字工具介绍
算术运算
# 相加
img_ori = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0226(galaxy_pair_original).tif", 0)dst = np.zeros_like(img_ori, dtype=float)for i in range(100):dst += img_oridst_1000 = np.zeros_like(img_ori, dtype=float)
for i in range(1000):dst_1000 += img_oriplt.figure(figsize=(24, 8))
plt.subplot(1,3,1), plt.imshow(img_ori, 'gray'), plt.title("Original"),# plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2), plt.imshow(dst, 'gray'), plt.title("100"),# plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3), plt.imshow(dst_1000, 'gray'), plt.title("1000"),# plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
def set_bin_last_0(x):"""这是把最低位为1的有效位置为0, 如:[1, 0, 0, 1, 0, 0] -> [1, 0, 0, 0, 0, 0]"""bin_list = list(bin(x)[2:])for i in range(len(bin_list)-1, -1, -1):if int(bin_list[i]) == 1:bin_list[i] = '0'breakb = "".join(bin_list)return int(b, 2)
def set_bin_last_0(x):"""这是把最后一位是1的置为0"""bin_tmp = bin(x)[2:]if int(bin_tmp[-1]) == 1:string = str(int(bin_tmp) - 1)return int(string, 2)else:return x
# 使用图像想减比较图像
img_ori = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0227(a)(washington_infrared).tif", 0)
img_ori = np.uint8(normalize(img_ori) * 255)height, width = img_ori.shape[:2]
dst = np.zeros([height, width], dtype=np.uint8)
for h in range(height):for w in range(width):dst[h, w] = set_bin_last_0(img_ori[h, w])dst = np.uint8(normalize(dst) * 255)img_diff = img_ori - dst
img_diff = np.uint8(normalize(img_diff) * 255)plt.figure(figsize=(24, 8))
plt.subplot(1,3,1), plt.imshow(img_ori, 'gray'), plt.title("Original"),# plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2), plt.imshow(dst, 'gray'), plt.title("Set bin last 0"),# plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3), plt.imshow(img_diff, 'gray'), plt.title("Difference"),# plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
# 使用图像相减比较图像,得到的结果跟书上相去甚远,还得继续研究
img_a = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0228(a)(angiography_mask_image).tif", 0)
img_b = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0228(b)(angiography_live_ image).tif", 0)img_a = np.uint8(normalize(img_a) * 255)
img_b = np.uint8(normalize(img_b) * 255)img_diff = (img_a - img_b)# 锐化算子,锐化内核强调在相邻的像素值的差异,这使图像看起来更生动
kernel_shapen = np.array(([0,-1,0],[-1,5,-1],[0,-1,0]), np.int8)
imgkernel_shapen = cv2.filter2D(img_b, -1, kernel_shapen)
img_diff_sha = imgkernel_shapen - img_aplt.figure(figsize=(12, 12))
plt.subplot(2,2,1), plt.imshow(img_a, 'gray'), plt.title("Mask"),# plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2), plt.imshow(img_b, 'gray'), plt.title("Live"),# plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3), plt.imshow(img_diff, 'gray'), plt.title("Difference"),# plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4), plt.imshow(img_diff_sha, 'gray'), plt.title("Difference"),# plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
# 使用图像相乘/相除校正阴影和模板
img_a = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0229(a)(tungsten_filament_shaded).tif", 0)
img_b = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0229(b)(tungsten_sensor_shading).tif", 0)
img_dst = img_a / img_b
plt.figure(figsize=(18, 8))
plt.subplot(1,3,1), plt.imshow(img_a, 'gray'), plt.title("Image A"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2), plt.imshow(img_b, 'gray'), plt.title("Image B"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3), plt.imshow(img_dst, 'gray'), plt.title("Calibration"), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
def generatePattern(CheckerboardSize, Nx_cor, Ny_cor):'''自定义生成棋盘:param CheckerboardSize: 棋盘格大小,此处100即可:param Nx_cor: 棋盘格横向内角数:param Ny_cor: 棋盘格纵向内角数:return:'''black = np.zeros((CheckerboardSize, CheckerboardSize, 3), np.uint8)white = np.zeros((CheckerboardSize, CheckerboardSize, 3), np.uint8)black[:] = [0, 0, 0] # 纯黑色white[:] = [255, 255, 255] # 纯白色black_white = np.concatenate([black, white], axis=1)black_white2 = black_whitewhite_black = np.concatenate([white, black], axis=1)white_black2 = white_black# 横向连接if Nx_cor % 2 == 1:for i in range(1, (Nx_cor+1) // 2):black_white2 = np.concatenate([black_white2, black_white], axis=1)white_black2 = np.concatenate([white_black2, white_black], axis=1)else:for i in range(1, Nx_cor // 2):black_white2 = np.concatenate([black_white2, black_white], axis=1)white_black2 = np.concatenate([white_black2, white_black], axis=1)black_white2 = np.concatenate([black_white2, black], axis=1)white_black2 = np.concatenate([white_black2, white], axis=1)jj = 0black_white3 = black_white2for i in range(0, Ny_cor):jj += 1# 纵向连接if jj % 2 == 1:black_white3 = np.concatenate((black_white3, white_black2)) # =np.vstack((img1, img2))else:black_white3 = np.concatenate((black_white3, black_white2)) # =np.vstack((img1, img2))return black_white3
# 使用图像相乘/相除校正阴影和模板
img_b = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0229(b)(tungsten_sensor_shading).tif", 0)check = generatePattern(150, 6, 10)
img_temp = check[..., 0][:img_b.shape[0], :img_b.shape[1]].astype(float)
img_temp = img_temp * img_bimg_dst = img_temp / img_bplt.figure(figsize=(20, 8))
plt.subplot(1,3,1), plt.imshow(img_temp, 'gray'), plt.title("Image A"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2), plt.imshow(img_b, 'gray'), plt.title("Image B"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3), plt.imshow(img_dst, 'gray'), plt.title("Calibration"), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
# 使用图像相乘/相除校正阴影和模板
img_a = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0230(a)(dental_xray).tif", 0)
img_b = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0230(b)(dental_xray_mask).tif", 0)
img_temp = normalize(img_b)
img_dst = img_a * img_temp
plt.figure(figsize=(18, 8))
plt.subplot(1,3,1), plt.imshow(img_a, 'gray'), plt.title("Image A"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2), plt.imshow(img_b, 'gray'), plt.title("Image B"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3), plt.imshow(img_dst, 'gray'), plt.title("Calibration"), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
注意
大多数图像是使用不比特显示的(24比特彩色图像由三个不同的8比特通道组成)。因此,我们期望图像的灰度值范围为0 ~ 255。当图像心师傅晚上他啊如TIFF或JPEG存储时,图像的灰度值会自动转换到这一范围。当图像的灰度超过这一允许范围时就会进行剪切或缩放。许多软件 包在把图像转换为8比特时,只是简单地把所有负值转换为0,而把超过这一限值的值转换为255。已知一个或多个算术(或其他)运算产生的数字图像ggg时,保证将一个值的全部范围“捕获”到某个固定比特的方法如下。
gm=g−gmin(2.31)g_{m} = g - g_{min} \tag{2.31}gm=g−gmin(2.31)
然后执行
gs=K[gm/gmax](2.32)g_{s} = K[g_{m} / g_{max}] \tag{2.32}gs=K[gm/gmax](2.32)
它生成一幅缩放的图像gsg_{s}gs,该图像的值域为[0, K]。处理8比特图像时令K=255。执行除法运算时,需要在加上一个较小的数,以免费出现 除以0的现象。
集合运算和逻辑运算
-
补集
令灰度图像的元素由集合AAA表示,集合AAA的元素形式是三元组(x,y,z)(x, y, z)(x,y,z),其中x和yx和yx和y是空间坐标,zzz是灰度值。我们将集合AAA的补集定义为
Ac={(x,y,K−z)∣(x,y,z)∈A}A^c = \{ (x, y, K-z) | (x, y, z) \in A \}Ac={(x,y,K−z)∣(x,y,z)∈A}
它是集合AAA中灰度已送去常数K的像素集合。这个常数等于图像中的最大灰度值$2^k -1 ,其中,其中,其中k是用于表示是用于表示是用于表示z$的比特数。 -
并集
元素数量是每个人两个灰度集合A和B的并集定义为:
A⋃B={max(a,b)∣a∈A,b∈B}A \bigcup B = \{\text{max}(a, b) | a\in A, b \in B \}A⋃B={max(a,b)∣a∈A,b∈B}
# 补集,并集
img_a = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0232(a)(partial_body_scan).tif", 0)
img_b = 255 - img_aimg_dst = np.zeros(img_a.shape[:2], dtype=np.float)
height, width = img_a.shape[:2]
z = 3 * np.sum(img_a) / (img_a.size)
for i in range(height):for j in range(width):img_dst[i, j] = max(img_a[i, j], z)plt.figure(figsize=(15, 10))
plt.subplot(1,3,1), plt.imshow(img_a, 'gray'), plt.title("Image A"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2), plt.imshow(img_b, 'gray'), plt.title("Image B"), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3), plt.imshow(img_dst, 'gray'), plt.title("Calibration"), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
逻辑运算
AND、OR、NOT、XOR
def b1_and_b2(img_b1, img_b2):"""input two [0, 1] images, return a [0, 1] image of both images AND operation"""height, width = img_b1.shape[:2]img_dst = np.zeros([height, width], np.uint)for h in range(height):for w in range(width):img_dst[h, w] = img_b1[h, w] and img_b2[h, w]return img_dstdef b1_or_b2(img_b1, img_b2):"""input two [0, 1] images, return a [0, 1] image of both images OR operation"""height, width = img_b1.shape[:2]img_dst = np.zeros([height, width], np.uint)for h in range(height):for w in range(width):img_dst[h, w] = img_b1[h, w] or img_b2[h, w]return img_dstdef b1_xor_b2(img_b1, img_b2):"""input two [0, 1] images, return a [0, 1] image of both images XOR operation"""height, width = img_b1.shape[:2]img_dst = np.zeros([height, width], np.uint)for h in range(height):for w in range(width):img_dst[h, w] = img_b1[h, w] ^ img_b2[h, w]return img_dst
# 逻辑运行
height, width = 300, 400
mid_h, mid_w = height//2 + 1, width//2 + 1img_b1 = np.zeros([height, width], dtype=np.uint)
img_b1[100:200, 50:250] = 1
img_b2 = np.zeros_like(img_b1, dtype=np.uint)
img_b2[50:150, 150:300] = 1img_notb1 = normalize(~(img_b1)) # np.invert
img_b1_and_b2 = b1_and_b2(img_b1, img_b2) # b1 AND b2
img_b1_or_b2 = b1_or_b2(img_b1, img_b2) # b1 OR b2
img_not_b2 = np.uint(normalize(~(img_b2)) + 0.1) # First NOT img_b2, but return[-2, 0], normalize to [0. 0.9999], +0.1 then conver to [0, 1]
img_b1_and_not_b2 = b1_and_b2(img_b1, img_not_b2) # img_b1 AND NOT(img_b2)
img_b1_xor_b2 = b1_xor_b2(img_b1, img_b2) # b2 XOR b2plt.figure(figsize=(7.2, 10))
plt.subplot(5, 3, 2), plt.imshow(img_b1, 'gray'), plt.title('B1'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 3), plt.imshow(img_notb1, 'gray'), plt.title('NOT(B1)'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 4), plt.imshow(img_b1, 'gray'), plt.title('B1'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 5), plt.imshow(img_b2, 'gray'), plt.title('B2'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 6), plt.imshow(img_b1_and_b2, 'gray'), plt.title('B1 AND B2'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 7), plt.imshow(img_b1, 'gray'), plt.title('B1'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 8), plt.imshow(img_b2, 'gray'), plt.title('B2'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 9), plt.imshow(img_b1_or_b2, 'gray'), plt.title('B1 OR B2'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 10), plt.imshow(img_b1, 'gray'), plt.title('B1'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 11), plt.imshow(img_not_b2, 'gray'), plt.title('NOT(B2)'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 12), plt.imshow(img_b1_and_not_b2, 'gray'), plt.title('B1 AND [NOT B2]'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 13), plt.imshow(img_b1, 'gray'), plt.title('B1'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 14), plt.imshow(img_b2, 'gray'), plt.title('B2'), plt.xticks([]), plt.yticks([])
plt.subplot(5, 3, 15), plt.imshow(img_b1_xor_b2, 'gray'), plt.title('B1 XOR B2'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
空间运算
空间运算直接对图像的像素执行,分三类
-
(1)单像素运算;
-
(2)邻域运算;
-
(3)几何空间变换。
-
单像素运算
-
用一个变换同函数TTT改变图像各个像素的灰度,z是原图像中的像素的灰度,s是处理后图像中对应像素(映射)灰度:
s=T(z)(2.42)s = T(z) \tag{2.42}s=T(z)(2.42) -
邻域运算
-
邻域处理在输出图像ggg中相同坐标处生成一个对应的像素,这个像素的值由输入图像中邻域尚未确认规定运算和集合SxyS_{xy}Sxy中的坐标确。如算术平均等。
g(x,y)=1mn∑(r,c)∈Sxyf(r,c)(2.43)g(x, y) = \frac{1}{mn}\sum_{(r,c)\in S_{xy}} f(r, c) \tag{2.43}g(x,y)=mn1(r,c)∈Sxy∑f(r,c)(2.43) -
几何变换
-
几何变换改变图像中像素的空间排列。这些变换通常称为橡皮膜变换。数字图像的几何变换由两种基本运算组成:
- (1)坐标的空间变换;
- (2)灰度内插,即为空间变换后的像素赋灰度值。
-
仿射变换,包括绽放变换、平移变换、旋转变换和剪切变换。
[x′y′]=T[xy]=[t11t12t21t22][xy](2.44)\begin{bmatrix} x' \\ y' \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t_{11} &t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \tag{2.44}[x′y′]=T[xy]=[t11t21t12t22][xy](2.44) -
采用如下$3 \times 3 $矩阵,用齐次坐标来表示所有4个仿射变换是可能的
[x′y′1]=A[xy1]=[a11a12a13a21a22a23001][xy1](2.45)\begin{bmatrix} x' \\ y' \\1 \end{bmatrix} = A \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \tag{2.45}⎣⎡x′y′1⎦⎤=A⎣⎡xy1⎦⎤=⎣⎡a11a210a12a220a13a231⎦⎤⎣⎡xy1⎦⎤(2.45)
仿射变换矩阵A
-
恒等 x′=x,y′=yx' = x, y'=yx′=x,y′=y
[100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ⎣⎡100010001⎦⎤ -
缩入/反射(对于反射,将一个比例因子设为-1,而将另一个比例因子设为0) x′=cxx,y′=cxyx' = c_{x} x, y'= c_{x} yx′=cxx,y′=cxy
[cx000cy0001]\begin{bmatrix} c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} ⎣⎡cx000cy0001⎦⎤ -
关于原点旋转x′=xcosθ−ysinθ,y′=xsinθ+ycosθx' = x cos \theta - y sin \theta, y' = x sin \theta + y cos \thetax′=xcosθ−ysinθ,y′=xsinθ+ycosθ
[cosθ−sinθ0sinθcosθ0001]\begin{bmatrix} cos \theta & - sin \theta & 0 \\ sin \theta & cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} ⎣⎡cosθsinθ0−sinθcosθ0001⎦⎤ -
平移 x′=x+tx,y′=y+tyx' = x + t_{x}, y'= y + t_{y}x′=x+tx,y′=y+ty
[10tx01ty001]\begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix}⎣⎡100010txty1⎦⎤ -
垂直剪切 x′=x+svy,y′=yx' = x + s_{v} y, y'= yx′=x+svy,y′=y
[1sv0010001]\begin{bmatrix} 1 & s_{v} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}⎣⎡100sv10001⎦⎤ -
水平剪切 x′=xy,y′=y+shx' = x y, y'= y + s_{h}x′=xy,y′=y+sh
[100sh10001]\begin{bmatrix} 1 & 0 & 0 \\ s_{h} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}⎣⎡1sh0010001⎦⎤ -
正向映射
-
它包括扫描输入图像的像素,并在每个位置(x,y)(x, y)(x,y)用式(2.45)直接计算输出图像中相应像素的空间位置(x′,y′)(x', y')(x′,y′)
-
正向映射的问题是,输入图像中的两个或多个像素可变换到输出图像中的同一位置,这就产生了如何把多个输出值合并为单个输出像素值的问题。
-
另外,某些输出位置可能根本没有要赋值的像素。
-
反射映射
-
它扫描输出像素的位置,并在每个位置(x′,y′)(x', y')(x′,y′)使用(x,y)=A−1(x′,y′)(x, y) = A^{-1}(x', y')(x,y)=A−1(x′,y′)计算输入图像中的相应位置,然后在最近的输入像素之间进行内插,求出输出像素的灰度
-
反向映射要比正向映射更有效
# 单像素运算 --> 负图像 : 255 - img
img = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0220(a)(chronometer 3692x2812 2pt25 inch 1250 dpi).tif', 0)
img = img[1100:3500, 200:2600]x = np.arange(255)
y = 255 - ximg_inv = 255 - imgplt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original'), #plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.plot(x, y), plt.title('s = T(z)'), plt.xticks([0, 255]), plt.yticks([0, 255])
plt.subplot(133), plt.imshow(img_inv, 'gray'), plt.title('255 - Image'), #plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
import numpy as npdef arithmentic_mean(image, kernel):"""caculate image arithmetic mean :param image: input image:param kernel: input kernel:return: image after convolution"""img_h = image.shape[0]img_w = image.shape[1]m = kernel.shape[0]n = kernel.shape[1]# paddingpadding_h = int((m -1)/2)padding_w = int((n -1)/2)image_pad = np.pad(image.copy(), (padding_h, padding_w), mode="constant", constant_values=0)image_convol = image.copy().astype(np.float)for i in range(padding_h, img_h + padding_h):for j in range(padding_w, img_w + padding_w):temp = np.sum(image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1] * kernel)image_convol[i - padding_h][j - padding_w] = 1/(m * n) * tempreturn image_convol
# 算术平均,m = n = 41
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0235(c)(kidney_original).tif', 0) #直接读为灰度图像m, n = 41, 41
mean_kernal = np.ones([m, n])
mean_kernal = mean_kernal / mean_kernal.sizeimg_dst = arithmentic_mean(img_ori, kernel=mean_kernal)
img_dst = np.uint8(normalize(img_dst) * 255)
img_cv2_mean = cv2.filter2D(img_ori, ddepth= -1, kernel=mean_kernal)
plt.figure(figsize=(24, 12))plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original')
plt.subplot(132), plt.imshow(img_dst, 'gray'), plt.title('Self Mean')
plt.subplot(133), plt.imshow(img_cv2_mean, 'gray'), plt.title('CV2 mean')
plt.tight_layout()
plt.show()
def rotate_image(img, angle=45):height, width = img.shape[:2]if img.ndim == 3:channel = 3else:channel = Noneif int(angle / 90) % 2 == 0:reshape_angle = angle % 90else:reshape_angle = 90 - (angle % 90)reshape_radian = np.radians(reshape_angle) # 角度转弧度# 三角函数计算出来的结果会有小数,所以做了向上取整的操作。new_height = int(np.ceil(height * np.cos(reshape_radian) + width * np.sin(reshape_radian)))new_width = int(np.ceil(width * np.cos(reshape_radian) + height * np.sin(reshape_radian)))if channel:new_img = np.zeros((new_height, new_width, channel), dtype=np.uint8)else:new_img = np.zeros((new_height, new_width), dtype=np.uint8)radian = np.radians(angle)cos_radian = np.cos(radian)sin_radian = np.sin(radian)# dx = 0.5 * new_width + 0.5 * height * sin_radian - 0.5 * width * cos_radian# dy = 0.5 * new_height - 0.5 * width * sin_radian - 0.5 * height * cos_radian# ---------------前向映射--------------------# for y0 in range(height):# for x0 in range(width):# x = x0 * cos_radian - y0 * sin_radian + dx# y = x0 * sin_radian + y0 * cos_radian + dy# new_img[int(y) - 1, int(x) - 1] = img[int(y0), int(x0)] # 因为整体映射的结果会比偏移一个单位,所以这里x,y做减一操作。# ---------------后向映射--------------------dx_back = 0.5 * width - 0.5 * new_width * cos_radian - 0.5 * new_height * sin_radiandy_back = 0.5 * height + 0.5 * new_width * sin_radian - 0.5 * new_height * cos_radianfor y in range(new_height):for x in range(new_width):x0 = x * cos_radian + y * sin_radian + dx_backy0 = y * cos_radian - x * sin_radian + dy_backif 0 < int(x0) <= width and 0 < int(y0) <= height: # 计算结果是这一范围内的x0,y0才是原始图像的坐标。new_img[int(y), int(x)] = img[int(y0) - 1, int(x0) - 1] # 因为计算的结果会有偏移,所以这里做减一操作。# # ---------------双线性插值--------------------# if channel:# fill_height = np.zeros((height, 2, channel), dtype=np.uint8)# fill_width = np.zeros((2, width + 2, channel), dtype=np.uint8)# else:# fill_height = np.zeros((height, 2), dtype=np.uint8)# fill_width = np.zeros((2, width + 2), dtype=np.uint8)# img_copy = img.copy()# # 因为双线性插值需要得到x+1,y+1位置的像素,映射的结果如果在最边缘的话会发生溢出,所以给图像的右边和下面再填充像素。# img_copy = np.concatenate((img_copy, fill_height), axis=1)# img_copy = np.concatenate((img_copy, fill_width), axis=0)# for y in range(new_height):# for x in range(new_width):# x0 = x * cos_radian + y * sin_radian + dx_back# y0 = y * cos_radian - x * sin_radian + dy_back# x_low, y_low = int(x0), int(y0)# x_up, y_up = x_low + 1, y_low + 1# u, v = np.modf(x0)[0], np.modf(y0)[0] # 求x0和y0的小数部分# x1, y1 = x_low, y_low# x2, y2 = x_up, y_low# x3, y3 = x_low, y_up# x4, y4 = x_up, y_up# if 0 < int(x0) <= width and 0 < int(y0) <= height:# pixel = (1 - u) * (1 - v) * img_copy[y1, x1] + (1 - u) * v * img_copy[y2, x2] + u * (1 - v) * img_copy[y3, x3] + u * v * img_copy[y4, x4] # 双线性插值法,求像素值。# new_img[int(y), int(x)] = pixelreturn new_img
# 几何空间变换
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0236(a)(letter_T).tif', 0) #直接读为灰度图像height, width = img_ori.shape[:2]img_21 = np.zeros([height, width], np.uint8)
img_temp = rotate_image(img_ori, 21)
mid_h, mid_w = img_temp.shape[0] // 2 + 1, img_temp.shape[1] // 2 + 1
img_21 = img_temp[mid_h-height//2:mid_h+height//2, mid_w-width//2:mid_w+width//2]img_roi = img_ori[210:250, 217:247]
img_21_roi = img_21[210:250, 240:270]plt.figure(figsize=(8, 10))
plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('Original')
plt.subplot(222), plt.imshow(img_21, 'gray'), plt.title('Clockwise Rotate 21')
plt.subplot(223), plt.imshow(img_roi, 'gray'), plt.title('Original ROI')
plt.subplot(224), plt.imshow(img_21_roi, 'gray'), plt.title('Rotation ROI')
plt.tight_layout()
plt.show()
图像配准
图像配准是一种重要的数字图像处理应用,它用于对齐同一场景的两幅或多幅图像。一幅输入图像和一幅参考图像,目的是对输入图像做几何变换,使得输出图像与参考图像对齐(配准)
def sift_kp(img):sift = cv2.xfeatures2d.SIFT_create()kp, des = sift.detectAndCompute(img, None)kp_img = cv2.drawKeypoints(img, kp, None)return kp_img, kp, desdef get_good_match(des1, des2):bf = cv2.BFMatcher()matches = bf.knnMatch(des1, des2, k=2)good = []for m, n in matches:if m.distance < 0.75 * n.distance:good.append(m)return good# H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
#其中H为求得的单应性矩阵矩阵
#status则返回一个列表来表征匹配成功的特征点。
#ptsA,ptsB为关键点
#cv2.RANSAC, ransacReprojThreshold这两个参数与RANSAC有关
def sift_image_align(img1, img2):"""图像配准"""_, kp1, des1 = sift_kp(img1)_, kp2, des2 = sift_kp(img2)good_match = get_good_match(des1, des2)if len(good_match) > 4:ptsA = np.float32([kp1[m.queryIdx].pt for m in good_match]).reshape(-1, 1, 2)ptsB = np.float32([kp2[m.trainIdx].pt for m in good_match]).reshape(-1, 1, 2)ransacReprojThreshold = 4H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)img_out = cv2.warpPerspective(img2, H, (img1.shape[1], img1.shape[0]), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)return img_out, H, status
# 几何空间变换
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0237(a)(characters test pattern)_POST.tif', 0) #直接读为灰度图像
h,w=img_ori.shape[:2]
M = np.array([[1, 0.05, 0], [0.4, 1, 0]], np.float32)
img_dst = cv2.warpAffine(img_ori, M, (w+100, h+350), borderValue=0)img_out, H, status = sift_image_align(img_ori, np.uint8(img_dst))img_diff = img_ori - img_outplt.figure(figsize=(10, 10))
plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('Original')
plt.subplot(222), plt.imshow(img_dst, 'gray'), plt.title('Perspective')
plt.subplot(223), plt.imshow(img_out, 'gray'), plt.title('Aligned')
plt.subplot(224), plt.imshow(img_diff, 'gray'), plt.title('Aligned differenc against Original')
plt.tight_layout()
plt.show()
向量与矩阵运算
列向量的a和ba和ba和b的内积(也称点积)
a⋅b=aTb=a1b1+a2b2+⋯+anbn=∑i=1naibi(2.50)a \cdot b = a^T b = a_{1} b_{1} + a_{2}b_{2} + \dots + a_{n} b_{n} = \sum_{i=1}^n a_{i} b_{i} \tag{2.50}a⋅b=aTb=a1b1+a2b2+⋯+anbn=i=1∑naibi(2.50)
-
欧几里得向量范数,定义为内积的平方根:
∥z∥=(zTz)12(2.51)\lVert z \rVert = (z^T z)^{\frac{1}{2}} \tag{2.51}∥z∥=(zTz)21(2.51) -
点(向量)z和az和az和a之间的欧几里得距离D(z,a)D(z,a)D(z,a)定义为欧几里得向量范数
D(z,a)=∥z−a∥=[(z−a)T(z−a)]12(2.52)D(z, a) = \lVert z - a \rVert = [(z - a)^T (z - a)]^{\frac{1}{2}} \tag{2.52}D(z,a)=∥z−a∥=[(z−a)T(z−a)]21(2.52) -
像素向量的另一个优点是在线性变换中,可表示为,A是大小m×n的矩阵,z和a是大小为n×1的列向量A是大小m \times n的矩阵,z 和 a是大小为n \times 1的列向量A是大小m×n的矩阵,z和a是大小为n×1的列向量
w=A(z−a)(2.53)w = A(z-a) \tag{2.53}w=A(z−a)(2.53) -
图像的更广泛的线性处理,fff是表示MN×1MN\times 1MN×1向量,nnn是表示M×NM\times NM×N噪声模式的MN×1MN\times 1MN×1的向量,ggg是表示 处理后图像的MN×1MN\times 1MN×1向量,HHH是表示用于对输入图像进行线性处理的MN×MNMN\times MNMN×MN矩阵
g=Hf+n(2.54)g = Hf + n \tag{2.54}g=Hf+n(2.54)
图像变换
图像处理任务最好按如下步骤完成:
- 变换输入图像
- 在变换域执行规定的任务,
- 执行反变换,
- 返回空间域。
二维线性变换是一种特别重要的变换,其通式为:
T(u,v)=∑x=0M−1∑y=0N−1f(x,y)r(x,y,u,v)(2.55)T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)r(x, y, u, v) \tag{2.55}T(u,v)=x=0∑M−1y=0∑N−1f(x,y)r(x,y,u,v)(2.55)
f(x,y)f(x, y)f(x,y)是输入图像,r(x,y,u,v)r(x, y, u, v)r(x,y,u,v)称为正变换核,u和vu和vu和v称为变换量,T(u,v)称为f(x,y)T(u, v)称为f(x, y)T(u,v)称为f(x,y)的正变换
反变换
f(x,y)=∑u=0M−1∑v=0N−1T(u,v)s(x,y,u,v)(2.56)f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u,v)s(x, y, u, v) \tag{2.56}f(x,y)=u=0∑M−1v=0∑N−1T(u,v)s(x,y,u,v)(2.56)
s(x,y,u,v)s(x, y, u, v)s(x,y,u,v)称为反变换核
可分离变换核
r(x,y,u,v)=r1(x,u)r2(y,v)(2.57)r(x, y, u, v) = r_{1}(x, u) r_{2}(y,v) \tag{2.57}r(x,y,u,v)=r1(x,u)r2(y,v)(2.57)
对称变换核
r(x,y,u,v)=r1(x,u)r1(y,v)(2.58)r(x, y, u, v) = r_{1}(x, u) r_{1}(y,v) \tag{2.58}r(x,y,u,v)=r1(x,u)r1(y,v)(2.58)
傅里叶变换的正变换核与反变换核
r(x,y,u,v)=e−j2π(ux/M+vy/N)(2.59)r(x, y, u, v) = e^{-j2\pi(ux/M + vy/N)}\tag{2.59}r(x,y,u,v)=e−j2π(ux/M+vy/N)(2.59)
s(x,y,u,v)=1MNej2π(ux/M+vy/N)(2.60)s(x, y, u, v) = \frac{1}{MN} e^{j2\pi(ux/M + vy/N)}\tag{2.60}s(x,y,u,v)=MN1ej2π(ux/M+vy/N)(2.60)
傅里叶变换核是可分离的和对称的
def add_sin_noise(img, scale=1, angle=0):"""add sin noise for imageparam: img: input image, 1 channel, dtype=uint8param: scale: sin scaler, smaller than 1, will enlarge, bigger than 1 will shrinkparam: angle: angle of the rotationreturn: output_img: output image is [0, 1] image which you could use as mask or any you want to"""height, width = img.shape[:2] # original image shape# convert all the angleif int(angle / 90) % 2 == 0:rotate_angle = angle % 90else:rotate_angle = 90 - (angle % 90)rotate_radian = np.radians(rotate_angle) # convert angle to radian# get new image height and widthnew_height = int(np.ceil(height * np.cos(rotate_radian) + width * np.sin(rotate_radian)))new_width = int(np.ceil(width * np.cos(rotate_radian) + height * np.sin(rotate_radian))) # if new height or new width less than orginal height or width, the output image will be not the same shape as input, here set it rightif new_height < height:new_height = heightif new_width < width:new_width = width# meshgridu = np.arange(new_width)v = np.arange(new_height)u, v = np.meshgrid(u, v)# get sin noise image, you could use scale to make some difference, better you could add some shiftnoise = abs(np.sin(u * scale))# here use opencv to get rotation, better write yourself rotation functionC1=cv2.getRotationMatrix2D((new_width/2.0, new_height/2.0), angle, 1)new_img=cv2.warpAffine(noise, C1, (int(new_width), int(new_height)), borderValue=0)offset_height = abs(new_height - height) // 2offset_width = abs(new_width - width) // 2img_dst = new_img[offset_height:offset_height + height, offset_width:offset_width+width]output_img = (img_dst - img_dst.min()) / (img_dst.max() - img_dst.min())return output_img
def butterworth_notch_filter(img, D0, uk, vk, order=1):M, N = img.shape[1], img.shape[0]u = np.arange(M)v = np.arange(N)u, v = np.meshgrid(u, v)DK = np.sqrt((u - M//2 - uk)**2 + (v - N//2 - vk)**2)D_K = np.sqrt((u - M//2 + uk)**2 + (v - N//2 + vk)**2)kernel = (1 / (1 + (D0 / (DK+1e-5))**order)) * (1 / (1 + (D0 / (D_K+1e-5))**order))kernel_normal = (kernel - kernel.min()) / (kernel.max() - kernel.min())return kernel_normal
# Sine noise -> denoise
import cv2
import matplotlib.pyplot as plt# input image without noise
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0237(a)(characters test pattern)_POST.tif', 0) #直接读为灰度图像# sine noise
noise = add_sin_noise(img_ori, scale=0.25, angle=-45)# image with sine noise
img = np.array(img_ori / 255, np.float32)
img = img + noise# clip & normalize and set image to 8 bits [0, 255]
img = normalize(img)
img = np.clip(img, low_clip, 1.0)
img = np.uint8(img * 255)# Denoise with Butterworth notch filter
plt.figure(figsize=(10, 10))
plt.subplot(221),plt.imshow(img,'gray'),plt.title('Image with sin noise')#--------------------------------
fft = np.fft.fft2(img)
fft_shift = np.fft.fftshift(fft)
amp_img = np.abs(np.log(1 + np.abs(fft_shift)))
plt.subplot(222),plt.imshow(amp_img,'gray'),plt.title('FFT')#--------------------------------
order = 3
start = 40
step = 30
BNF_dst = 1.0
for i in range(order):BNF = butterworth_notch_filter(img, D0=10, uk=start + i * step, vk=start + i * step, order=3)BNF_dst *= BNF
plt.subplot(223),plt.imshow((BNF_dst),'gray'),plt.title('mask')#--------------------------------
# 对新的图像进行逆变换
f1shift = fft_shift * (BNF_dst)
f2shift = np.fft.ifftshift(f1shift)
img_new = np.fft.ifft2(f2shift)#出来的是复数,无法显示
img_new = np.abs(img_new)#调整大小范围便于显示
img_new = np.uint8(normalize(img_new) * 255)
plt.subplot(224),plt.imshow(img_new,'gray'),plt.title('Denoised')# fft_mask = amp_img * BNF_dst
# plt.subplot(224),plt.imshow(fft_mask,'gray'),plt.title('FFT with mask')plt.tight_layout()
plt.show()
当正、反变换核可分、对称,且f(x,y)f(x,y)f(x,y)是大小为M×MM \times MM×M的方形图像时,式(2.55)和式(2.56)可表示为矩阵形式:
T=AFA(2.63)T = AFA \tag{2.63}T=AFA(2.63)
反变换:
BTB=BAFAB(2.64)BTB = BAFAB \tag{2.64}BTB=BAFAB(2.64)
若B=A−1B = A^{-1}B=A−1,则F=BTBF=BTBF=BTB,完全恢复;若B≠A−1B \neq A^{-1}B=A−1,则F^=BAFAB\hat F = BAFABF^=BAFAB,近似恢复。
图像和随机变量
灰度级zkz_kzk在这幅图像中出现的概率
p(zk)=nkMN(2.67)p(z_k) = \frac{n_k}{MN} \tag{2.67}p(zk)=MNnk(2.67)
nkn_knk是灰度级zkz_kzk在图像中出现的次数
∑k=0L−1p(zk)=1(2.68)\sum_{k=0}^{L-1}p(z_k) = 1 \tag{2.68}k=0∑L−1p(zk)=1(2.68)
均值(平均)灰度为:
m=∑k=0L−1zkp(zk)(2.69)m = \sum_{k=0}^{L-1} z_k p(z_k) \tag{2.69}m=k=0∑L−1zkp(zk)(2.69)
灰度的方差为:
σ2=∑k=0L−1(zk−m)2p(zk)(2.70)\sigma^2 = \sum_{k=0}^{L-1} (z_k - m )^2 p(z_k) \tag{2.70}σ2=k=0∑L−1(zk−m)2p(zk)(2.70)
第nnn阶中心矩:
灰度的方差为
μn(z)=∑k=0L−1(zk−m)np(zk)(2.71)\mu_n(z) = \sum_{k=0}^{L-1} (z_k - m )^n p(z_k) \tag{2.71}μn(z)=k=0∑L−1(zk−m)np(zk)(2.71)